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ABSTRACT  

 

Proposed concepts of spacecraft navigation that utilize 

timing information from observational data of variable 

celestial sources, including pulsars, require appropriate 

inertial reference frames and well-defined time transfer 

techniques. These timing methods must be operational for 

any potential spacecraft position and must reach high 

performance to achieve accurate navigation. Algorithms 

that can process the signal from these sources throughout 

the solar system and beyond are presented here. These 

algorithms include the high-order relativistic effects on 

the propagated signal that must be incorporated to attain 

precise timing. A comparison is presented of existing 

pulsar-timing algorithms in current software codes, as 

well as the time-transfer algorithms defined here.  

 

 

INTRODUCTION  

 

After being theorized for many decades, spinning neutron 

stars were discovered in the radio band in 1967 [1]. Due 

to their unique periodic pulses, these neutron stars were 

referred to as pulsars. Subsequent observations have 

discovered pulsars emitting radiation throughout the 

electromagnetic spectrum [2, 3]. A particularly intriguing 

aspect of these celestial sources is the measured inherent 

stability of the periodicity of their emissions. It has been 

shown that their signal stability matches the quality of 

today’s atomic clocks [4-6].  

 

Since their discovery, accurate timing of the periodic 

signals from pulsars has been crucial in their observation 

analysis. Pulse timing is required to adequately 

characterize each source’s unique characteristics; such as 

spin period, companion orbit elements, and star’s 

evolutionary stage [2, 3]. Accurate pulse timing is also 

necessary for future applications that utilize these signals, 

such as gravitational wave detection [7-9] and spacecraft 

navigation [10-12].  

 

In order to ensure accurate timing analysis of these stable 

sources, higher order relativistic effects must be included 

[2, 3, 13-16]. First-order approximations do not achieve 

sufficient accuracy for much of the required analysis. To 

investigate pulsar source characteristics, accuracies on the 

order of 1 µs or better are often desired. For spacecraft 

navigation, a desired accuracy of pulse arrival time on the 

order of 1 ns ( !  0.3 m) allows potentially increased 

position and velocity solution accuracy. Thus, any errors 

within the analytical timing expressions must be on the 

order of these uncertainties. These levels of performance 

also require accurate pulse timing models that predict the 

pulse phase over an extended time. 

 

This paper provides an overview of the existing methods 

of timing the arrival of pulsar signal photons and pulses 

for use in today’s pulsar characteristics modeling and for 

eventual use in spacecraft navigation applications. It also 

provides a method of time transfer to the center of mass 

of the solar system. The Background section provides a 

discussion on the methods used to model pulse time of 

arrivals and details on the techniques that derive the 

pulsar signal timing equations. The Existing Pulsar 

Observation Equations section provides a summary of the 

main equations in use within current analyses and 

operating analytical software codes. The Barycentric 

Time Transfer section identifies direct time transfer 

equations that could be used between any spacecraft 

location and the solar system center of mass, or 

barycenter. The Numerical Comparisons section provides 

an evaluation of the different identified algorithms based 

upon their simulations over various time periods. Finally 

some concluding remarks are provided. 

432
ION 63rdAnnual Meeting, April 23-25, 2007, Cambridge, Massachusetts 



 

 

BACKGROUND 

 

Pulsar emissions can be adequately modeled due to their 

considerable regularity. These models are often 

represented as total accumulated phase. The total phase, 

!, can be modeled as the sum of the fractional portion of 

the pulse period, !, and the total number of integer cycles, 

N. Thus, total phase is expressed as a function of time as, 

 
 
! t( ) = " t( ) + N t( )  (1) 

Alternatively, this model may be expressed as a function 

of angular phase,  ! = 2"# . Based upon the 

characteristics of an individual pulsar, including its pulse 

frequency, f, and derivatives, a pulse-timing model can be 

created based upon total phase as, 

 

   

! t( ) = ! t
0

( ) + f t " t
0

#$ %& +
1

2

!f t " t
0

#$ %&
2

+
1

6

!!f t " t
0

#$ %&
3

+ O !!!f( )
 (2) 

The pulse timing model of Eq. (2) is also known as the 

pulsar spin equation, or the pulsar spin down law [2, 3]. 

In this equation, the observation time, t, is the coordinate 

time of arrival of the signal phase, and t0 is a chosen 

reference epoch for the model parameters. Higher order 

frequency derivatives may be required to accurately 

represent some pulsars, and pulsars within binary system 

have even further complicated pulse timing models that 

incorporate the pulsar orbital period [17]. 

 

The primary analysis approach for determination of pulsar 

characteristics, or spacecraft navigation solutions, is to 

compare the pulse time of arrival (TOA) measured at an 

observation site on Earth, or onboard an orbiting 

spacecraft, to the predicted arrival time based upon the 

model represented in Eq. (2). The TOA timing difference, 

or timing residual, is the calculated difference multiplied 

by the pulse period, P, as [18], 

 
  
!t

TOA
= " t

TOA
( )# nint " t

TOA
( )$

%
&
'{ }P  (3) 

In Eq. (3), the function nint rounds the value to the 

nearest integer. In order to determine the timing residual 

with high performance, it is critical to compute 
 
t
TOA

 as 

accurately as possible, and as well as to maintain well-

defined pulse-timing models. 

 

In order to initially create accurate pulse-timing models as 

in Eq. (2), analytical methods must be defined that 

represent how to precisely time each pulse arrival. 

Subsequent observations utilize these same methods to 

accurately measure each pulse TOA. In order to reduce 

the complexity of these analytical methods, it is important 

to time the pulsar observations within an inertial reference 

frame that is stationary (at rest) with respect to the 

pulsar’s frame. This requires selecting a reference frame 

that is appropriate for the analysis and incorporates all the 

necessary contributing factors that must be included for 

transferring pulse TOA measured in the observer’s frame 

of reference to the selected inertial reference frame. This 

is done in part so that all subsequent observations can be 

directly compared to the model, and any effects of an 

observer in a rotating frame are removed. Since an 

observer’s frame will most likely be in motion with 

respect to the inertial frame, as an observer on Earth or on 

a spacecraft in orbit, and that the observer will experience 

a different gravitational potential than a reference clock, 

the observer clock’s measured proper-time must be 

converted to coordinate time in order to compare the 

result to other clocks. Standard methods provide 

conversions from observer’s proper time to coordinate 

time based upon observer’s clock motion and experienced 

gravitation potential [19-21]. These methods primarily 

refer to the conversion of topocentric clock observation 

time to coordinate time. Thus, additional considerations 

of different velocity and gravitational potential must be 

included for the spacecraft’s clock circumstance [22, 23].  

 

Once defined, the coordinate time scale and the valid 

location for this model must be stated in order for this 

model to be utilized by further observations. For many 

pulsar observations, the common frame utilized is the 

solar system barycentric (SSB) coordinate frame. This 

frame is referred to as the International Celestial 

Reference Frame (ICRF) and it axes are aligned with the 

equator and the equinox of epoch J2000 [24]. The 

reference time scale for these observations is the Temps 

Coordonnée Barycentrique (TCB, Barycentric Coordinate 

Time), although the slightly different time scale of the 

Temps Dynamique Barycentrique (TDB, Barycentric 

Dynamical Time) has also been utilized [24]. These 

pulse-timing models are often described to be valid at the 

origin of the SSB frame. In order to compare a measured 

pulse arrival time at a remote observation station with the 

predicted time at the SSB origin, the station must project 

arrival times of photons by its detector onto the SSB 

origin. This comparison requires that time be transferred 

from the observation station, or spacecraft, to the SSB. 

Alternatively, the SSB pulse-timing model could be 

transferred to another known location. For example, at a 

given time instance, the pulse timing model could be 

transferred to Earth’s center, in order to create pulse 

arrival time comparisons with the position of Earth. 

 

To accurately transfer time from one location to another, 

geometric and relativistic effects must be included in this 

transfer. These effects account for the difference in light 

ray paths from a source to the detector’s location and to 

the model’s location. These light ray paths can be 

determined using the existing theory of general relativity 

and the known effects of the solar system [25-27]. The 

equations from this theory relate the emission time of 

photons that emanate from a source to their arrival time at 

a station, and define the path of the photons traveling 

through curved spacetime [13-15]. 
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Figure 1 shows the relationship of pulses from a pulsar as 

they arrive into the solar system relative to the SSB 

inertial frame and a spacecraft orbiting Earth. The 

positions of the spacecraft, r, and the center of Earth, rE, 

with respect to the SSB are shown, as well as the unit 

direction to the pulsar,   n̂ . This line-of-sight vector to the 

pulsar can be determined relative to the SSB inertial 

coordinate system using its known angular location. 

 

 
Figure 1. Spacecraft position as pulses from a distant 

pulsar arrive within the solar system. 

A description of the pulse timing analysis approach is 

provided below, and follows several techniques 

applicable for pulsar timing analysis using Earth-based 

ground telescopes [13-15, 20, 21, 23, 25-27]. This 

description is provided here as a reference to the pulsar 

timing equations and the SSB time transfer equation. 

 

An individual pulse is composed of an assemblage of 

photons from a pulsar within the radio, optical, and X-ray 

bands of the spectrum. The path taken by a photon or 

particle in four-dimensional spacetime is referred to as a 

world line. A geodesic path is the world line between two 

points a light ray or particle takes while in free fall within 

a gravitational field. For a light ray or electromagnetic 

signal, including those in the radio band, these paths have 

zero spacetime length in traveling from the emitting 

source to the receiving location of the observer and are 

referred to as null geodesics. Generally within a 

gravitational field these geodesics have some curvature in 

space [22, 28]. The four dimensions of the spacetime 

coordinate frame can be generalized to  

 
  

x
0
, x

1
, x

2
, x

3{ } = ct, x, y, z{ }  (4) 

In this representation, the superscripts on the generalized 

coordinates, x, are indices, not exponents. The coordinate 

ct represents the dimension related to time with c equal to 

the speed of light, and 
  

x, y, z{ }  represent the spatial 

coordinates. In the theory of general relativity, the notion 

of a spacetime interval in curved space involves the 

spacetime metric, g"#. This spacetime interval, ds, can be 

defined as [29], 

 

  

ds = g
!"

dx!dx"

"=0

3

#
!=0

3

#  (5) 

The metric 
  
g
!"

= g
!"

(ct, x, y, z)  is a function of the time 

and spatial coordinates, and the elements of g"# form a 

symmetric, covariant tensor that defines the geometry of 

spacetime. The dx" terms are the differentials of the 

spacetime coordinates and define the path of an object 

through spacetime. The Greek indices " and # range from 

0 to 3 and the Latin indices of i and j range from 1 to 3 

[29]. For Minkowski’s flat space of special relativity 

(absence of gravity), the symmetric tensor is simply the 

four terms of 
  
g

00
= !1, g

11
= g

22
= g

33
= 1 , with all other 

terms equal to zero [28].  

 

The spacetime interval is invariant with respect to 

arbitrary coordinate transformations, and its value 

remains constant for these transformations. The proper 

time, $, measured by a clock during a pulsar observation 

as it moves along a world line, is related to the invariant 

spacetime interval and the coordinate time. From the 

theory of general relativity, this relationship for the 

spacetime interval is general with respect to the geometry 

of spacetime from Eq. (5) as, 

 

  

ds2
= !c2d" 2

= g
00

c2dt2
+ 2 g

0 j
cdtdx j

j=1

3

# + g
ij
dxidx j

j=1

3

#
i=1

3

#
 (6) 

In a weak-gravitational field and nearly flat space, which 

is appropriate for the solar system, a Post-Newtonian 

metric tensor is suitable and can be expressed to second 

order of the total gravitational potential within the system. 

Within this type of system, the spacetime interval, ds, of 

Eq. (6) has been shown to 
  
O 1 c

4( ) order to be [14, 15, 

27, 28], 

 

  

ds2
= !c2d" 2

= ! 1!
2U

c2
+

2U 2

c4

#

$%
&

'(
c2dt2

+ 1+
2U

c2
+

3U 2

2c4

#

$%
&

'(
dx2

+ dy2
+ dz2( )

 (7) 

The total gravitational potential, U, acting on the 

spacecraft clock is the sum of the gravitational potentials 

of all the bodies in the solar system, and is defined in the 

positive sense (
  
U = GM x

2
+ y

2
+ z

2 + higher order 

terms). Along the null geodesic paths of electromagnetic 

signals the spacetime interval equals zero, or ds = 0. 

Therefore the time coordinate relates to the path 

coordinates of Eq. (7), and using a binomial expansion 

this relationship is valid to order 
  
O 1 c

4( )  as, 

 

  

cdt = 1+
2U

c2
+

7U 2

4c4

!

"#
$

%&
dx2

+ dy2
+ dz2

 (8) 

Considering a single pulse from a source, the transmission 

time of each photon within the pulse is related to the 

reception, or observed, time of the photon by the distance 
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along the path this photon has traveled. Figure 2 presents 

a diagram of a emitting source and the observation of the 

photon at a spacecraft near Earth. The vector to the source 

from the center of the Sun is D, the position of the 

spacecraft relative to the Sun is p, and the line-of-sight 

from the spacecraft to the pulsar is 
   
n̂

SC
. Since a pulse is 

an ensemble of these photons, by measuring the arrival 

times of all the photons within a pulse period, the arrival 

time of the pulse peak can be determined. 

 

By integrating Eq. (8), an algorithm can be developed to 

determine when the N
th

 pulse is received at the spacecraft 

at time, 
 
t

SC
N

, relative to when it was transmitted from the 

pulsar at time, 
 
t
T

N

. This is represented as, 

 

  

c dt
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t
SCN! = 1+
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2(

)
*
*

+

,
-
-

1

2

dx
D

x
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x
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In Eq. (9), 
 
p

x
 and 

 
D

x
 are the x-axis components of the p 

and D vectors of Figure 2, respectively. The solution to 

this equation depends on the null geodesic light ray path 

and the gravitational potential of bodies along this path. 

 

Since the Sun’s gravitational field is the primary field of 

influence within the solar system and since its field can be 

considered symmetric about the z-axis, a pulse of photons 

arriving into the solar system will travel primarily within 

the x-y plane as in Figure 2. Therefore, the integrated 

solution between a pulsar and an observation spacecraft 

can be computed as [14, 15, 25-27, 30], 
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In Eq. (10), 
  
p

N
 represents position of the spacecraft 

when it receives the N
th

 pulse from the pulsar relative to 

the center of the Sun (not the SSB), and 
   
n̂

SC
 is the unit 

direction along the path DN–pN. The first term on the right 

hand side of Eq. (10) is the geometric separation between 

the source and the observer. The second term is the 

summation of Shapiro delay effects of all the bodies 

within the solar system [31]. The speed of light in terms 

of the coordinates varies due to the strengths and 

positions of the gravitational potential fields along a light 

ray path. This effect contributes to the general relativistic 

effect on the transfer of time along a light ray null 

geodesic. The summation within this term is taken over 

all bodies in the solar system, BSS. The terms 
  
p

N
k

and 

  
D

N
k

 are the respective positions of the spacecraft and the 

source relative to the k
th

 planetary body in the solar 

system at 
 
t

SC
N

 and 
 
t
T

N

, respectively. As in Eq. (9), the 

subscripts x and y denote the x-axis and y-axis values of 

the terms from Figure 2, respectively. The third and 

fourth terms in this equation are the second-order effect of 

the deflection of the light ray path of the pulse due to the 

Sun, which is the primary influencing gravitational force 

within the solar system. These terms are typically a small 

value (< 40 ns) [27]. The contributions of the Sun’s total 

angular momentum, J, are considered negligible here, 

however, may be considered for some applications [27]. 

  

 
Figure 2. Light ray path arriving from distant pulsar 

to spacecraft within the solar system. 

 

It is noted that Eq. (10) does not take into account all 

possible gravitational perturbations between a pulsar and 

a spacecraft detector. Many gravitational sources may 

exist along the photon light ray path, each affecting the 

total transmission time. However, since these effects are 

nearly constant for tens of years, for the purposes of this 

pulse timing analysis these effects are ignored [14, 15]. 

 

 

EXISTING PULSAR OBSERVATION EQUATIONS 

 

Previous astrophysical researchers have pursued the 

timing analysis of pulsar signals. This section presents an 

overview of these previous results, as well as a discussion 

about the relationships of these previous algorithms to the 

analytical equations presented above. 

 

Most pulsar timing implementations have utilized some 

form of Eq. (10) as a baseline for the algorithm used to 

define photon arrival times. However, modifications and 

simplifications have often been introduced in the 

implementation of this equation. There are two primary 
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issues with utilizing this full equation [13-15]. Firstly, the 

coordinate TOA, 
 
t

SC
N

, at the spacecraft of the N
th

 pulse 

can be measured during an observation but the derivations 

have been done to solve for the transmission time, 
 
t
T

N

, of 

the pulse from the source, in this case a pulsar. As 

previously mentioned, pulsar characteristics analysis 

should be completed in a frame at rest with respect to the 

pulsar, and the pulsar frame itself would be ideal for this. 

Thus, for characteristic analysis, a pulsar-centric time 

would be the best approach. However, the epochs for this 

pulsar-centric time can be many years previous to the 

observation date due to the vast pulsar distance, thus 

potentially confusing the pulse model construction and 

the subsequent use in future observations. 

 

Additionally, there is the large uncertainty in the 

knowledge of the pulsar position, D. With current 

methods, the angular position of a pulsar can be measured 

to fractions of a milliarcsecond; however, its distance can 

only be computed in terms of fractions of a kiloparsec (1 

pc !  3.26 ly). For desired TOA accuracies of 1 µs or 

better, this uncertainty of hundred of light-years is clearly 

very much too large. Therefore, most algorithm 

simplifications primarily reconstruct a transmission time 

to be something attainable in the near term, and strive to 

remove the dependency on the pulsar distance knowledge 

in their implementations. The simplest method is to 

compare two closely sequential received pulses, 

effectively removing this ambiguity by differencing. 

Within many of these simplified timing equations, terms 

on order of several hundreds of nanoseconds are missing, 

due to these simplifications from Eq. (10). 

 

Early representations of the pulsar timing equation, often 

provided without derivation, included timing relative to a 

topocentric clock utilized for radio telescope observations 

terms. An introductory equation is provided in [2] as, 

 
   
t

b
= !

topo
+

n̂ "r

c
# $t

DM
+ $t

r
 (11) 

In Eq. (11), tb is the barycentric arrival time, $topo is the 

topocentric measurement time of the observation, and r is 

the position of the measurement clock with respect to the 

SSB. This second term represents a simple geometric 

displacement of the clock from the SSB. The third term is 

due to the interstellar plasma (medium) delay, and is 

equal to  

 

  

!t
DM

=
(0.00415)DM

f 2
 (12) 

where DM is the column density of electrons, or the 

dispersion measure, in units of pc/cm
3
, and f is the 

observing frequency in GHz. This term is significant only 

for radio and optical observation frequencies, as the X-ray 

spectrum is near “infinite” frequency, thus this term is 

considered negligible for X-ray observations. The final 

term in this equation, 
 
!t

r
, is relativistic clock correction 

of clock on Earth’s surface [2]. 

 

An updated form of this timing equation is provided in 

[32] as, 

 
   
t

b
= !

topo
+

D " r

c
" #t

DM
+ #t

E!
 (13) 

This form of the equation introduces the transmission 

time from the source in the second term. However, as 

noted in the reference, the second term is expanded with 

respect to the ratio of distance magnitudes r/D, which to 

first order is equals the second term of Eq. (11), once the 

leading term equivalent to the total pulsar distance, D, is 

absorbed into the representation of the initial epoch of 

phase [32]. The term 
  
!t

E!
 is the solar system’s Einstein 

delay, which is a combined effect of gravitational redshift 

of Earth and other bodies and time dilation due to the 

motion of Earth, and can be expressed as an integral [32], 

 

   

d!
E!

dt
=

GM
k

c
2
r

kk=1

B
SS

" +
#

E

2

2c
2
$ constant  (14) 

In Eq. (14), Mk is the mass of each solar system body 

other than Earth, and rk is the distance of body k from 

Earth, and %E is Earth speed with respect to the SSB. 

 

An additional representation of the timing equation 

includes added relativistic effects as [33],  

 
    
t

b
= !

topo
+

n̂ "r

c
# $t

DM
+ $t

E!
# $t

S!
 (15) 

The final term of Eq. (15) is the Shapiro delay term, and 

is expressed as [33], 

 
   

!t
S!

= "
2GM

S

c
3

ln 1+ cos#( )  (16) 

In Eq. (16), & is the pulsar-Sun-Earth angle at the time of 

the observation. 

 

Further representations including the topocentric 

observation time expand the second term of Eq. (13) to 

include second order effects as [5, 34, 35], 

 

    

t
b
= !

topo
+

n̂ "r

c
+

(n̂ "r)2
# r 2

2cD

# $t
DM

+ $t
E!

# $t
S!

+ $t
A!

 (17) 

In Eq. (17), 
  
!t

A!
 is aberration delay due to Earth’s 

rotation [33, 34]. The various representations from Eqs. 

(11), (13), (15), and (17) provide pulsar timing equations 

that transform the topocentric observation time to the 

barycentric coordinate time. From these observations, the 

characteristics of the pulsar itself can be investigated. 

 

The derivation documented in [13] provides additional 

insight to the methods of pulsar timing. Derived from the 

relativistic path equations, it relates a coordinate time of 

observation (assuming the proper time has already been 
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converted to the appropriate coordinate time scale), tSC, to 

a barycentric observation time as, 

 

   

t
b
= t

SC
+

n̂ !r

c
"

1

2cD
n̂ # r

2

+
2GM

S

c
3

1

2
1" n̂ !r( ) " ln

2D

r 1+ n̂ !r( )

$

%

&
&

'

(

)
)

 (18) 

The statements are made clear in the text that this Eq. (18) 

provides a barycentric date of the observation, and is not 

the same as the time of arrival at the barycenter of a 

photon emitted from a source [13]. 

 

Another detailed derivation of the pulsar signal timing 

analysis is provided in [14, 15], which builds upon the 

relativistic work accomplished in [25-27, 30]. This 

analysis presents several simplifications to the full Eq. 

(10) in order to address the implementation issues of this 

equation as cited above. The initial simplification 

recommends that for 100 ns accuracy it is only necessary 

to consider the first two terms of the Eq. (10) such that, 

 

   

t
T

N

= t
SC

N

!
1

c
D

N
! p

N

+
2GM

k

c3

k=1

B
SS

" ln
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#p

N
k

+ p
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k

n̂
SC
#D

N
k

+ D
N

k

 (19) 

In Eq. (19), the first term from Eq. (10) has been 

rearranged in terms of path magnitude. However, this 

resulting equation still includes the largely ambiguous 

pulsar position term, D. Thus, further modification 

includes the knowledge of the change in position of the 

pulsar. The proper-motion of the emitting source can be 

included for the change of the pulsar’s location from its 

position, D0, at the emission of the 0
th

 pulse at 
  
t
T

0

, and its 

position, DN, of the N
th

 pulse at 
 
t
T

N

 [14]. Assuming a 

constant proper motion,  V , and that the difference in 

transmission time is considered equal to the difference in 

reception time, such that 
  
!t

N
" (t

T
N

# t
T

0

) $ (t
SC

N

# t
SC

0

) , 

the pulsar position can be represented as, 

 
   
D

N
= D

0
+ V!t

N
 (20) 

The line-of-sight can be represented from Eq. (20) as 

   
n̂

N
= D

N
/ D

N
, and its initial value as 

   
n̂

0
= D

0
/ D

0
. If 

the line-of-sight to the emitting source is considered 

constant within the solar system, then the separate 

directions become 
   
n̂

SC
! n̂

SSB
! n̂

S
! n̂

N
. 

 

The significant modification recommended in [14, 15] 

involves a change in origin within the equation from a 

Sun centered frame to the SSB frame. The assumption is 

that the subtraction of a constant offset does not affect the 

final pulsar timing analysis since any fixed value can be 

absorbed into the initial phase epoch. Therefore, in the 

first term of Eq. (19), the heliocentric position of the 

clock, p, can be replaced by the barycentric position, r, 

resulting in the following using Eq. (20), 
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Figure 3 presents a diagram of the positions of the pulsar, 

the spacecraft, and the SSB with respect to the Sun.  

 

 
Figure 3. Spacecraft position relative to Sun, SSB 

origin, and other planetary bodies. 

 

Eq. (21) retains the full position of the pulsar,  D , as well 

as the transmission time, 
 
t
T

N

. Since these cannot be 

determined to the accuracy required by the pulsar timing 

analysis or are unknown, a new term is introduced to the 

algorithm in order to gather these unknown terms into 

values that can be effectively ignored within pulsar timing 

analysis. This is due to the selection of the initial epoch as 

an arbitrary value. Also, since the timing residual 

difference of Eq. (3) is a relative difference, a fixed offset 

in the computation of !(TOA) does not affect the residual 

computation (only the absolute value of ! is effected). 

Thus, the introduction of a zero-order TOA into the solar 

system is introduced as, 
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Subtracting this fixed value from Eq. (21) along with the 

above simplifications results in a simplified expression of,  
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This equation does not solve for the pulse arrival time at 

the SSB (as incorrectly portrayed in many papers). Rather 
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it provides a pulsar-centric difference time (
  
t
T

N

! t
T

0

) 

against which a given observation (
  
t

SC
N

! t
SC

0

) can be 

compared. However, it is easy to see how this is 

misunderstood, as seen by the representations in several 

of the existing equations. Implementations of these 

equations have incorrectly referred to this correction as a 

bary-centering process, since ignoring the zeroth order 

term t0 makes the equations appear to transfer time from 

the observer’s position to the barycenter origin. The 

actual true concept is pulsar-centering of the photon into 

a frame origin that is at rest with respect to the pulsar. As 

discussed in [14, 15], the left-hand side of Eq. (23) 

involves the model of the rotation dynamics of the pulsar. 

The second term on the right-hand side is the first-order 

Doppler delay. The third term is due to the effects of 

annual parallax, and together with the second term is 

Roemer delay. The forth term, proportional to "tN, is due 

to the pulsar’s proper motion. The fifth term, proportional 

to 
  
!t

N

2
 is due to the pulsar’s transverse motion. The sixth 

term is the Shapiro delay effect.  
 

Discussions have been presented regarding the timing of 

pulsars within binary systems [17, 36, 37]. Binary system 

pulsars have additional complexity within their timing 

models, as well as considerations of the additional 

relativistic effects produced by the companion star’s 

mass. The Shapiro delay terms in these systems can be 

represented similarly as the isolated pulsar sources. 

However these papers present considerations of only the 

time-varying portion of the Shapiro delay effects, and do 

not create a time difference between the pulse arrival at 

Earth-based telescopes and the SSB. 
 

Both these relativistic-based analyses of [13] and [14, 15] 

assume the coordinate arrival time of a photon at the 

observation station on Earth. They could be applicable to 

spacecraft if the spacecraft’s position is substituted for 

Earth position, although the added effects of a 

spacecraft’s motion and gravitational potential must be 

included when converting from proper-time to coordinate 

time. The position of the Sun, planetary bodies, and 

observer’s position, p, can be well known (to tens of 

meters) to allow accurate knowledge of these terms within 

this timing equation for pulsar characteristic observations. 

 

 

BARYCENTRIC TIME TRANSFER 

 
This section presents a method of specific time transfer 

between an arbitrary solar system position and the SSB. 

Although it does not exactly match existing pulsar 

barycentric date of observation calculations, it can be 

used for applications of direct time transfer.  

 

In order to make a direct comparison of the pulse arrival 

time at the spacecraft relative to its projected arrival time 

at the SSB, time must be transferred from the spacecraft 

to the SSB. This time transfer can be accomplished by 

differencing the transmit time of the N
th

 pulse from a 

pulsar, 
 
t
T

N

, to its arrival at each of the spacecraft, 
 
t

SC
N

, 

and the SSB, 
 
t

SSB
N

, as in 
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 (24) 

 

Eq. (10) provides the time difference from the 

transmission source to the spacecraft, (
 
t

SC
N

! t
T

N

), which 

is based upon the heliocentric spacecraft position of p. A 

similar representation of Eq. (10) can be made for the true 

SSB position, b, as shown in Figure 3 (the interested 

reader is referred to Eq. 4.26 of [11] for the expression). 

Substituting this new expression into Eq. (24), the direct 

difference yields the necessary transfer time between the 

spacecraft and the SSB as, 
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(25) 

In Eq. (25), the subscript for the   N
th

 pulse received at 

each location has been dropped for clarity, and several 

terms have been rearranged for improved numerical 

characteristics. The resulting equation is the full second-

order high accuracy time transfer equation between the 

spacecraft and the SSB, and should be accurate to sub-

nanosecond if all terms are retained. 
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Since Eq. (25) still includes the ambiguous source 

position D, the arguments for simplification as presented 

above due to the pulsar position and line of sight can be 

directly followed. Neglecting the difference of the third 

and fourth terms should have small effect, since the 

difference of these two small values can be effectively 

ignored. When the position of the spacecraft relative to 

the SSB,  r  (such that 
 
p = b + r ), is used, then these 

simplifications modify the time transfer equation to relate 

 
t

SC
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t
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, to the following, 
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Ignoring all terms of order 
  
O 1 D

0

2( )  yields a time 

transfer algorithm of,  
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Since the Sun imposes the primary gravitational field 

within the solar system, the expression in Eq. (27) may be 

further simplified as,  
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Since pulse timing models could be defined at any known 

location, such as Earth–center, Earth–Moon barycenter, 

Mars–center, even other spacecraft locations, it may be 

necessary to implement time transfer to locations other 

than the SSB. These equations can be used to transfer 

time between the spacecraft and another reference 

position, by replacing the position of the SSB’s origin,  b , 

with the new reference position (ex. 
  
r

E
, if the model is 

defined at Earth–center). Thus, these expressions provide 

a method to accurately compare the pulse arrival time at 

the spacecraft with those of pulsar timing models that can 

be defined at any known location within the solar system. 

 

Time transfer will be an important aspect for accurate 

spacecraft navigation using pulsars. However, as can be 

seen in these equations, this time transfer requires 

knowledge, or an estimate, of detector position in order to 

be implemented. It has been shown that this dilemma can 

still be addressed in order to determine spacecraft position 

and velocity [11, 12, 38]. 

 

 

NUMERICAL COMPARISONS 

 

Shapiro Delay Expressions 

It is noted in the various pulsar timing equations of (11), 

(13), (15), (17), (18), and (23) that there are many 

similarities in the Doppler and Roemer delay terms, aside 

from some assumptions such as constant source position. 

However, this is not necessarily true of the listed Shapiro 

delay terms. Due to their derivations, or underlying 

assumptions, several of these equations have unique 

expressions for this effect. Although this term is a 

secondary effect, it still amounts to hundreds of 

microseconds, so it is important to properly evaluate this 

term correctly for improved accuracy.  

 

Several valuable software codes have been written to 

provide researchers with analysis tools for investigating 

these sources. These include the pulsar timing code 

TEMPO [18], and the X-ray photon processing code 

AxBary [39]. A comparison of the expressions used for 

Shapiro delay in these software codes versus those 

proposed by the cited references is provided below. 

 

Designed specifically for pulsar timing and characteristic 

analysis, the TEMPO code provides a significant tool for 

astrophysics research. Developed primarily at Princeton 
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University, this code largely follows the equations from 

[14, 15, 32, 33] for topocentric radiometric observations, 

although some provisions are provided for spacecraft 

based measurements. In its later code versions, most of 

the pulsar timing equation of Eq. (23) is included, 

however, the implemented Shapiro delay term is 

computed as, 
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The cosine term is specifically implemented as, 

 
   
cos! = n̂

N
" p̂( )  (30) 

 

Designed as a software processing tool to generate pulse 

TOAs from direct X-ray astronomy observations, AxBary 

is a component of an analysis software package, provided 

in part by the NASA HEASARC facility [39, 40]. Its 

implementation within the software file bary.c of Shapiro 

delay is the same as Eq. (16), which is similar to Eq. (29) 

without the extra scaling factor. 

 

Since the expression of Shapiro delay in Eq. (23) is the 

result after the zero-order TOA term of Eq. (22) is 

removed, it contains units of the position variables within 

the logarithm term. Although this expression provides the 

additional contributions of all planetary bodies, some 

scaling factor must be included to insure the argument of 

the logarithmic term is unitless. To provide a comparison 

to the remaining equations in this analysis, the 

logarithmic arguments were scaled by dividing by 1 AU. 

 

Two representative pulsars and their known parameters 

were selected to complete the comparison process. These 

were the Crab pulsar (PSR B0531+21) and PSR 

B1937+21. The ephemeris data from each source was 

provided from observational archives. For PSR 

B0531+21, a position of RA = 05
h
34

m
31

s
.973, Dec = 

+22°00#52##.06, distance = 2 kpc, a proper motion of µ$ = 

-17 mas/yr and µ% = 7 mas/yr at epoch 48743.0 MJD [41-

44]. For PSR B1937+21 a position of RA = 

19
h
39

m
38

s
.5600084, Dec = +21°34#59 ##.13548, distance = 

3.6 kpc, a proper motion of µ$ = -0.128 mas/yr and µ% = -

0.486 mas/yr at epoch 52328.0 MJD [41, 45]. 

 

A simulation was created to evaluate these comparisons. 

To incorporate the known positions of the solar system 

bodies, the JPL DE405 ephemeris tables were utilized 

[46]. It was assumed that all times within the simulation 

were coordinate observation times, thus no proper time 

conversion was implemented. To simulate the position of 

a spacecraft observing the chosen pulsars, a position at 

conjunction of Earth with respect to the Sun was chosen, 

effectively placing the spacecraft on the opposite side of 

the Sun in Earth’s orbit (selected as a 182 day lag behind 

Earth). 

 

Evaluations were completed for each pulsar over two 

years, starting from 1 January 2006, and 25 years from 

this same epoch used to represent two periods of Jupiter’s 

orbit, the second most dominant gravitational effect 

within the Shapiro delay equations. Plots of the 

differences of each expression from the TEMPO version 

of Eq. (29) were created. To show the comparison 

sufficiently, these plots have the initial difference offset 

(if any) from each set removed. This removal of the 

constant offset is a valid assessment since the zeroth order 

phase epoch is arbitrary. 

 

The Shapiro delay expression for three pulsar timing 

methods is differenced with respect to the delay from 

TEMPO for PSR B1937+21 is shown in Figure 4. This 

comparison is plotted over two years to show the cyclic 

effects within the graphs. The difference between 

TEMPO and AxBary is periodic due to the inclusion of 

the spacecraft position in Eq. (29) as opposed to Eq. (16). 

The amplitude of this difference during this time frame 

reaches 330 ns. The amplitude of the difference using Eq. 

(18) reaches 60 ns, whereas for Eq. (23) the amplitude 

only reaches 36 ns. Due to the changing position of the 

major planets, including Jupiter, over 25 years the 

differences for Eq. (18) reaches 125 ns and for Eq. (23) 

reaches 55 ns. 

 

For the Crab pulsar, the Shapiro delay difference plots 

over two years are shown in Figure 5. Although the same 

cyclic effects are visible in the plots of the AxBary 

difference with a magnitude reaching 330 ns, the plots 

show some numerical instability for the differences of 

Eqs. (18) and (23). This is caused by the instability of the 

logarithm term as the line of sight to the pulsar from the 

spacecraft intersects with the Sun. If the regions where the 

logarithm is unstable are removed, since it is likely the 

pulsar could not be observed during these times due to the 

Sun, then the difference over 25 years of Eq. (18) reaches 

values on the order of 500 ns and Eq. (23) reaches 50 ns. 

 

For future use of these timing equations, it is important to 

note their potential numerical uncertainties in all terms, 

including the Shapiro delay expression. To address some 

of this uncertainty, a recently developed software code 

has been made available to the public. This next 

generation of pulsar timing code, named TEMPO2, 

attempts to increase the level of performance of timing of 

these sources [47, 48]. Some unique attributes of this code 

include the use of the TCB time scale, quadruple 

precision data processing, and the inclusion of additional 

planets to the Shapiro delay computation. With a stated 

accuracy of 1 ns or better, future analysis is planned to 

compare TEMPO2’s defined timing equation with those 

discussed here. 
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Figure 4. Differences of Shapiro delay magnitude for 

PSR B1937+21. Initial offset from each difference has 

been removed for clarity. The initial epoch is 1 

January 2006. 

 

 
Figure 5. Differences of Shapiro delay magnitude for 

the Crab pulsar, with initial difference offset removed. 

Initial epoch is 1 January 2006. 

 

SSB Time Transfer Expressions 

The equations of time transfer in the solar system of Eqs. 

(25), (26), (27), and (28) provide decreasing complexity 

of computation, however, these also produce diminishing 

accuracy. Depending on the performance required by a 

specific application, the algorithm with adequate accuracy 

should be utilized. Therefore, a simulation of these 

equations was created to evaluate their performance over 

two and 25 years. This was a similar set up as the Shapiro 

delay simulation, with all times being coordinate times, 

the JPL DE405 ephemeris used for solar system object 

positions, and the same pulsars being analyzed. 

 

In order to produce the results of the simulation it was 

required to utilize variable precision arithmetic to 

compute the differences between large and small values. 

This was implemented to avoid the potential numerical 

truncation, which ignores small remainders, when using 

fixed double precision. It is recommended that quadruple 

precision (128 bits of floating point) be used if any of the 

Eqs. (25)–(28) are implemented for deep space missions.  

 

The plot of Figure 6 provides the differences for the 

simplified SSB time transfer equations with respect to Eq. 

(25) over a two-year duration. The differences for Eqs. 

(26) and (27) are nearly the same (thus the line graphs lie 

nearly on top of each other in this figure) with a 

maximum difference of 65 ps during this time frame and a 

maximum of 780 ps over the 25 years. The simplification 

of considering only the Sun’s Shapiro delay effect causes 

the difference for Eq. (28) to reach 3 ns over full 25 years 

duration. The plot of Figure 7 shows the time transfer 

differences for the Crab pulsar over the same time 

duration. Due to the line of sight to the pulsar 

approaching the Sun towards the end of the first year and 

more pronounced in the second year, the logarithm terms 

can grow unbounded, therefore the plot is windowed for 

clearer view of the differences outside this region. If this 

unbounded region is ignored, the differences for Eqs. (26) 

and (27) reach approximately 2 ns over 25 years, and the 

difference for Eq. (28) reaches 5 ns. Using any of the 

simplified expressions from Eq. (26), (27), or (28) 

provides a method to transfer time from the spacecraft’s 

position to the SSB position. When using one of these 

equations to operate within a navigation system, it is 

important to consider reference time scales, pulsar phase 

timing model definitions, and desired accuracy in order to 

insure correct time transfer results. 

 

Although they were designed primarily for Earth based 

observations, it is interesting to note the effects on the 

pulse timing equations at various possible spacecraft 

locations throughout the solar system. If a spacecraft were 

hypothetically at the center of the Sun (approximated as a 

point mass) and assuming negligible effects from other 

planetary bodies, then within Eq. (10) p = 0 and the 

Shapiro delay is infinite, which can be discarded as a 

constant in a pulsar timing analysis, leaving primarily 

only the fixed geometric delay term. However, if a 

spacecraft were at the SSB such that p = b, then the 

Shapiro delay term continues to have cyclic effects due to 

the motion of the Sun about the barycenter. The derived 

equations of Eqs. (25) through (28) describe the transfer 

of time from a spacecraft to the SSB. Therefore, when a 

spacecraft is hypothetically at the SSB where r = 0 (and p 

= b) all equations compute a zero time difference. This 

includes the Shapiro delay term for these equations. In 

contrast to the pulsar timing equations, these time transfer 

equations would have cyclic effects if a spacecraft is 

located at the Sun’s center (p = 0), assuming the infinite 

Shapiro delay effect is discarded. The fundamental 

difference is that pulsar timing analysis equations 
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determine the barycentric photon arrival time with respect 

to the pulsar by removing the unknown transmission time, 

whereas the time transfer equations project the measured 

photon arrival time at a known position to the SSB origin.  

 

 
Figure 6. Differences of SSB time transfer equations 

for PSR B1937+21. Initial epoch is 1 January 2006. 

 

 
Figure 7. Differences of SSB time transfer equations 

for Crab pulsar. Initial epoch is 1 January 2006. 

 

 

CONCLUSIONS 

 

Accurately timing pulses from pulsars is important for 

astrophysics research and applications such as spacecraft 

navigation. As the state of the art advances in these fields, 

timing algorithms that provide nanosecond level accuracy 

are being pursued. Currently utilized methods have errors 

on the order of hundreds of nanoseconds based upon their 

implementation simplifications, which should be 

addressed if improved accuracies are required. A time 

transfer equation within the solar system is provided here 

based upon the same pulse-timing derivation techniques, 

with simplified forms expected to be accurate to tens of 

nanoseconds or less. Further research plans include 

considering derivations that are not restricted to a straight 

line photon light-ray path, investigating the implications 

of neglecting the Sun’s total angular momentum, 

reviewing additional components for binary star systems, 

and studying the newer implementations within the latest 

analysis software codes. 
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