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ABSTRACT

In this paper, the arrival times of X-ray photons from
variable celestial sources, measured by an X-ray detector
onboard a spacecraft, are modeled as a non-homogeneous
Poisson random process with a periodic or quasi-periodic
rate function. The problem of pulse phase estimation is
addressed for the case in which the observed signal fre-
quency is assumed to be constant and known over the ob-
servation interval. A maximum-likelihood phase estima-
tor (MLE) is derived, and its performance is analyzed in a
Monte-Carlo simulation. The Cramer-Rao theoretical per-
formance bound is also derived and evaluated for this pa-
rameter estimation problem and then compared against the
MLE results. Next, the problem of pulse phase estima-
tion is considered for the case in which dynamical motion
of the spacecraft causes the observed signal frequency to
vary considerably over the observation interval. The con-
stant frequency assumption is not valid in this case, and the

observed signal exhibits doppler shifts that may cause the
pulse arrival times (or phase epochs) at the detector to drift
gradually and in an unpredictable manner over the obser-
vation interval. For this scenario, a pulse phase tracking al-
gorithm is proposed that consists of an MLE followed by a
digital phase-locked loop (DPLL). Photon arrival times are
processed through the proposed algorithm, and the DPLL
tracked phase and frequency are plotted to demonstrate its
dynamical tracking capability.

INTRODUCTION

While a vast majority of celestial sources throughout the
known universe produce steady, or persistent, amounts of
radiation, there are also those whose radiation varies in in-
tensity over time. These variable celestial sources, or vari-
able stars, have been shown to emit radiation throughout
the electromagnetic spectrum, including the radio, optical,
X-ray, and gamma-ray bands [17]. Various intrinsic and
extrinsic physical mechanisms acting on these sources pro-
duce several types of emissions including object pulsations,
eruptions, rotation, eclipses by companion stars, and cata-
clysmic effects, which have been observed and recorded for
many celestial objects [18]. It has been shown that a subset
of these variable sources, namely spinning neutron stars, or
pulsars, have very regular, stable, periodic signals [11][12].
Remarkably, some pulsars have long term stabilities on the
order of today’s atomic clocks [8][13].

Astrophysical studies of the emitted signals from vari-
able celestial sources have been utilized to characterize
the parameters of these sources. For pulsars in particular,
whose emissions can be accurately modeled due to their
inherent periodicity, these studies have compared the ob-
served pulse time of arrival (TOA) to the predicted pulse
TOA using pulse timing models that are defined within the
solar system barycentric inertial reference frame [11][12].
Careful analysis in defining these models, as well as the
construction of precise detectors, is crucial to the accurate
determination of a source’s characteristic. Previous meth-
ods have created binned pulse profiles through extended
observations of a specific source and folding the full ob-
served signal with the expected pulse period of the source
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[21]. These methods compute the observed pulse TOA by
correlating an observed pulse profile with a high signal-to-
noise profile template. Each observation must accurately
time the pulse signal with respect to an inertial coordinate
system and time, effectively removing the dynamic motion
of the observation station and the relativistic effects on the
electromagnetic signal within the solar system [1]. If the
removal of motion and higher order contributions is done
improperly, a smearing effect would be present within the
observed pulse profile, and the uncertainty of the measured
pulse TOA would increase.

Over the past decades, several works have considered ex-
ploiting the periodic nature of variable celestial sources for
navigation of spacecraft within the solar system and be-
yond. Pulse TOA, or pulse phase, when measured by a
moving spacecraft depends on the radial distance between
the source and the spacecraft. Such measurements, there-
fore, convey information about the spacecraft’s position.
The feasibility of extracting this information and utilizing
it for navigation purposes was investigated in [7][16][23],
for sources that emit in the radio band. Similar concepts
were examined in [5][16][19], for sources that emit in the
X-ray band, primarily because smaller sized detectors can
be utilized.

There are a number of X-ray sources with characteris-
tics that are suitable for navigation purposes. Some are
quite bright, emitting significant amounts of X-ray radi-
ation, or flux, but many are faint, requiring larger sized
detectors to collect a sufficient number of source photons
over a given observation time interval. Other complications
arise when sources exhibit unpredictable flares or output
bursts, glitches in their rotation rates, and transient on-off
durations. There is also an appreciable diffuse X-ray back-
ground radiation flux, which must be accounted for dur-
ing the observation of any particular source [4]. Figure 1
provides an image of the Crab Nebula and its pulsar (PSR
B0531+21) within the X-ray band. Sources such as the
Crab Pulsar exhibit high-flux X-ray emissions with known
periodicity and are, therefore, viable candidates for use in
navigation.

This paper presents methods for determining the pulse
TOA from the periodic signals emitted by variable celes-
tial X-ray sources. Due to the inherent periodicity of these
signals, the problem of pulse TOA estimation can be con-
sidered equivalently in the context of pulse phase estima-
tion. The paper is organized in the following manner. First,
a non-homogeneous Poisson random process is presented
for modeling the arrival times of the X-ray photons. A
maximum-likelihood phase estimator (MLE) is then pre-
sented for the case in which the observed signal frequency
is constant and known over the observation interval. The
Cramer-Rao theoretical performance bound is derived and
evaluated for this parameter estimation problem. Next, a
pulse phase tracking algorithm is presented for the case

Fig. 1 Crab Nebula
and Pulsar (NASA/
CXC/ASU/J. Hester
et al.) [14].

in which the dynamical motion of the spacecraft over the
observation interval results in considerable variation in the
observed signal frequency. Tracking the phase of the ob-
served pulse, as the vehicle progresses through its trajec-
tory, provides a measure of the distance and rate of change
of distance traveled during a given observation. Finally, nu-
merical results are presented followed by a brief discussion
of results and concluding remarks.

X-RAY SIGNAL MODEL AND SOURCE / DETEC-
TOR CHARACTERISTICS

The arrival times of X-ray photons at the detector are
modeled as a non-homogeneous Poisson process (NHPP)
with a periodic or quasi-periodic rate function λ(t) ≥ 0.
In this representation, the number of photons arriving in a
given time interval is a Poisson random variable. In other
words, the probability of k photons arriving in the interval
(a, b) is given by the expression [2][15]:

Pr [ k ; (a, b) ] =

{
exp

[
−

∫ b

a
λ(t) dt

]}[∫ b

a
λ(t) dt

]k

k!

(1)

k = 0, 1, 2, . . . . The rate function λ(t) represents the ag-
gregate rate of all photons arriving at the detector from the
source and background. The background photons arrive at
a constant rate Rb. The source photons arrive at an av-
erage rate of Rs photons per second (ph/s) and consist of
pulsed and non-pulsed photons, whose ratio is dictated by
the pulsed fraction parameter, denoted ρ ≤ 1. The pulsed
fraction is defined as the ratio of the pulsed to total source
photons. The non-pulsed source photons arrive at the con-
stant rate of (1−ρ)Rs, and for all practical purposes behave
the same as background photons. The pulsed source pho-
tons, however, exhibit a time-varying rate of arrival, which
can be represented by the composition of two functions:
the normalized pulse profile function, h(φ), and the pulsar
observed phase at the detector, φdet(t). The overall rate
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function, therefore, consists of the following terms:

λ(t) = Rb + (1− ρ)Rs︸ ︷︷ ︸
≡ β

+ ρ Rs︸ ︷︷ ︸
≡ α

h( φdet(t) ) (ph/s) (2)

The parameters α and β will be called the effective source
and background photon arrival rates; they are the criti-
cal parameters with regards to performance. The pulse
profile function h(φ) is typically specified on the interval
φ ∈ (0, 1); however, in Eqn. (2), its definition is extended
to any phase φ ∈ (−∞,+∞) by letting h(m + φ) = h(φ)
for all integers m, thus making h(φ) a periodic function
with its period equal to one cycle. The function h(φ)
is normalized and by definition satisfies the conditions:
minφ∈(0,1) h(φ) = 0, and

∫ 1
0 h(φ)dφ = 1.

The observed phase at the detector can be expressed in
terms of an initial phase and phase accumulated since be-
ginning of the observation:

φdet(t) = θ0 +
∫ t

t0

f(t′) dt′ ≡ θ0 + θ(t) (3)

where,

f(t) ≡ observed signal frequency = fs + fd(t)
fs ≡ source frequency (assumed constant)

fd(t) ≡ doppler frequency shift = fs v(t) /c
v(t) ≡ spacecraft range rate (radial speed)

in the direction towards the source

The source frequency, fs, is assumed constant over the
observation interval. This assumption, however, does not
limit the scope of the ensuing analysis, since variations in
the source frequency are often forecasted, and their effects
can be removed through pre-processing of the photon TOA
measurements. Also, the second and higher-order relativis-
tic doppler effects have been ignored. The accumulated
phase, θ(t), consists of the following two terms:

θ(t) = fs (t− t0) +
∫ t

t0

fd(t′) dt′

︸ ︷︷ ︸
≡ θd(t)

(4)

where θd(t) will be referred to as the doppler phase. If
range rate is a constant over the observation interval, or
v(t)= v, then θ(t) reduces to a strictly linear form: fs(1 +
v/c)(t − t0), and correspondingly, the Poisson rate func-
tion, λ(t), is strictly periodic. On the other hand, if range
rate is not a constant, then θd(t) exhibits a non-linear de-
pendence on time, resulting in a Poisson rate function that
is quasi-periodic. These scenarios lead to the following two
signal models.

Constant-frequency model: in which the observed sig-
nal frequency is a constant, f ≡ fs(1 + v/c) ≡ 1/P , and
phase evolves linearly at the detector, φdet = θ0+f(t−t0).
This model is considered when the detector is stationary or

is moving at a constant radial speed with respect to the pul-
sar, and the pulsar itself is undergoing negligible change in
its period, P , over the observation interval. Substituting for
φdet in Eqn. (2); the Poisson rate function can be written
explicitly as a function of the initial phase and frequency
parameters:

λ(t ; θ0, f) = β + α h( θ0 + f (t− t0) ) (5)

The Poisson rate function is strictly periodic in this case,
because h is strictly periodic, and its argument in Eqn. (5)
is a linear (affine) function of time. The initial phase pa-
rameter, θ0, may also be regarded as a time shift parame-
ter, since from Eqn. (5), it is evident that: λ(t ; θ0, f) =
λ(t + τ ; 0, f), where τ ≡ θ0/f = θ0P . Hence, the prob-
lems of pulse time-of-arrival estimation (τ modulo P sec-
onds) and pulse phase estimation (θ0 modulo one cycle) are
the identical problems under this model.

Time-varying frequency model: is considered when
the radial speed of the spacecraft in the direction of the
source varies appreciably over the observation interval. In
this case, the observed phase at the detector includes the
phase variation due to doppler: φdet = θ0+f(t−t0)+θd(t),
and the Poisson rate function is given by:

λ(t) = β + α h( θ0 + fs(t− t0) + θd(t) ) (6)

which is quasi-periodic due to θd(t) causing the argument
of h to deviate from the strictly linear form.

MAXIMUM-LIKELIHOOD PULSE PHASE & FRE-
QUENCY ESTIMATION

In this section, maximum-likelihood (ML) estimation of
the pulse phase and frequency parameters is addressed un-
der the constant frequency model. Let {t1, t2, . . . , tK} de-
note the photon TOAs measured with a stable clock over
the observation interval (t0, t0 + Tobs), where t0 <tk <
t0 + Tobs for 1≤ k≤K. Our goal here is to estimate
the model parameters θ0 and f based on the observed real-
ization of the non-homogeneous Poisson process (NHPP),
{tk}, whose time-varying expectation, λ(t; θ0, f), has the
known functional dependence on the estimation parameters
given in Eqn. (5). The photon arrival rate parameters α and
β, and the normalized pulse profile function h(φ), are as-
sumed to be known quantities.

The derivation of the ML estimator (MLE) presented be-
low follows that of [2] with minor notational changes. We
begin by noting the following consequences of adopting the
NHPP model:

• The probability of zero photons arriving in the interval
(a, b) is obtained by setting k = 0 in Eqn. (1):

Pr [ 0 ; (a, b) ] = exp

[
−

∫ b

a
λ(t) dt

]
(7)
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• The probability of one photon arriving in an infinites-
imal time interval ξ of duration ∆t centered around t, i.e.
the interval ξ ≡ (t−∆t/2, t+∆t/2), is given by evaluating
Eqn. (1) for k = 1:

Pr [ 1 ; (t−∆t/2, t + ∆t/2) ] = λ(t; θ0, f) ∆t (8)

as ∆t→ 0.

• The probability of more than one photon arriving in ξ
is zero for ∆t→ 0.

• The number of photons arriving in any interval is inde-
pendent of those in all other disjoint intervals.

The K-dimensional joint probability density function
(pdf) of a given NHPP realization, denoted f({tk}), can be
calculated by first considering an infinitesimal interval ξk

of duration ∆tk centered around each tk, k = 1, 2, . . . ,K.
The probability that one and only one photon arrives within
each of these intervals and none outside of them is:

f({tk}) ∆t1 ∆t2 . . . ∆tK = Pr [ 0 ; (t0, t1 −∆t1/2) ]
× Pr [ 1 ; (t1 −∆t1/2, t1 + ∆t1/2) ]
× Pr [ 0 ; (t1 + ∆t1/2, t2 −∆t2/2) ]

...
× Pr [ 1 ; (tK −∆tK/2, tK + ∆tK/2) ]
× Pr [ 0 ; (tK + ∆tK/2, t0 + Tobs) ] (9)

Substituting Eqns. (7) and (8) into Eqn. (9), the following
expression is obtained for the joint pdf by taking the limit
∆tk → 0 for all 1 ≤ k ≤ K:

(10)

f({tk}) = exp



−
t0+Tobs∫

t0

λ(t; θ0, f) dt




K∏

k=1

λ(tk; θ0, f)

Recognizing the above joint pdf as the likelihood func-
tion, the ML estimator solves for the parameter values at
which the likelihood function is maximized. Equivalently,
logarithm of the likelihood function (LLF) can be maxi-
mized:

(11)

LLF(θ̃0, f̃) ≡
K∑

k=1

log[λ(tk; θ̃0, f̃)]−
t0+Tobs∫

t0

λ(t; θ̃0, f̃) dt

where log is the natural logarithm, and θ̃0 and f̃ denote the
test values at which the LLF is evaluated. When the obser-
vation interval spans many cycles of the signal at the hy-
pothesized frequency (or f̃Tobs)1), as in most cases of in-
terest, it can be shown that the integral in Eqn. (11) exhibits
a minimal dependence on the search parameters θ̃0 and f̃ .
Therefore, it can be dropped from the objective function for
ease of computation in the optimization process. Substitut-
ing the constant frequency model of Eqn. (5) for λ(t; θ0, f)
into Eqn. (11), the final optimization problem that the MLE

must solve is obtained: (12)

( θ̂0, f̂ ) = arg max
θ̃0∈Θ,
f̃∈Ω

K∑

k=1

log
[
β + α h(θ̃0 + f̃(tk − t0))

]

︸ ︷︷ ︸
∼= LLF( θ̃0, f̃ )

The sets Θ and Ω denote the phase and frequency search
spaces over which the LLF is to be maximized. The brute-
force method of numerically solving the above optimiza-
tion problem involves an iterative grid-search algorithm. It
sets up an MΘ-by-MΩ grid uniformly spanning the two-
dimensional search space Θ×Ω and proceeds to evaluate
the LLF at each grid point. The grid point corresponding
to the maximum computed LLF value is then selected as
the phase and frequency estimates. The solution is refined
by repeating this process over multiple iterations, where
at each iteration a narrower phase and frequency interval,
centered around the solution from the previous iteration, is
searched. A-priori information about the parameters may
be used to initially set the span of the phase and frequency
search spaces before the first iteration.

When the signal frequency (including the doppler shift)
is known to sufficient accuracy, the two-dimensional phase
and frequency optimization of Eqn. (12) reduces to the fol-
lowing one-dimensional phase-only optimization:

θ̂0 = arg max
θ̃0∈Θ

LLF( θ̃0, fref ) (13)

by simply using the a-priori reference frequency (denoted
fref) in numerically evaluating the LLF function.

THE CRAMER-RAO PERFORMANCE BOUND

The phase parameter estimation problem is now ana-
lyzed for the constant frequency model. Additionally, we
assume the observed frequency, f , is known. In this case,
the Poisson rate function takes on the form: λ(t; θ0) =
β + α h(θ0 + f(t − t0)). Note that the following analysis
may also be presented in terms of the pulse time-of-arrival,
or pulse delay (τ ) estimation.

Consider the problem of estimating the initial phase pa-
rameter, θ0, based on the measured photon arrival times.
Partitioning the observation interval (t0, t0 + Tobs) into N
equal-length segments (or bins), the observation may al-
ternatively be represented by the photon count sequence:
X≡(X0, X1, . . . , XN−1), where Xn is the number of pho-
tons counted in the n-th bin. Let ∆t≡Tobs/N denote the
bin size, and let it be arbitrarily small (or N arbitrarily
large), so that the Poisson rate function λ(t; θ0) can be as-
sumed slow-varying relative to ∆t. In other words, assume
that photons arrive at a constant rate:

λn(θ0) ≡ λ(ξn; θ0) (14)

over the n-th bin, where the sequence ξn denotes the bin
edges as depicted in Figure 2.
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Fig. 2 Photon binning and notation.

In estimation theory, the Cramer-Rao bound (CRB)
places a lower bound on the variance of θ̂0, where θ̂0 is
any unbiased estimator of θ0:

Var(θ̂0) ≥ CRB(θ0) ≡
1

−E
[

∂2

∂θ2
0

log Pr(X; θ0)
] (15)

and the expectation is taken with respect to Pr(X; θ0)
[9]. In evaluating (15), the probability mass function
(pmf) for each of the Poisson random variables Xn, n =
0, 1, . . . , N − 1, can be written:

Pr(Xn = x; θ0) =
[λn(θ0) ∆t]x

x!
exp[−λn(θ0)∆t]

x = 0, 1, 2 . . . (16)

The mean and variance of the Poisson random sequence,
Xn, are given by:

E(Xn) = Var(Xn) = λn(θ0) ∆t (17)

Since Xn is an independent random sequence, the joint pmf
for the sequence can be written as a product of pmf’s of the
individual random variables in the sequence, i.e.:

Pr(X; θ0) =
N−1∏

n=0

Pr(Xn; θ0) (18)

=
N−1∏

n=0

[λn(θ0) ∆t]Xn

Xn!
exp[−λn(θ0)∆t]

We proceed with the evaluation of the right-hand side ex-
pression in Eqn. (15):

log Pr(X; θ0) =
N−1∑

n=0

Xn log [λn(θ0) ∆t]− log (Xn!)

−λn(θ0)∆t (19)

−E
[

∂2

∂θ2
0

log Pr(X; θ0)
]

=
N−1∑

n=0

∂2

∂θ2
0

(
λn(θ0)∆t

)

−E(Xn)
∂2

∂θ2
0

(
log [λn(θ0)∆t]

)
(20)

dropping terms that do not depend on θ0.

Substituting (17) for E(Xn):

CRB−1(θ0) =
N−1∑

n=0

∂2

∂θ2
0

(
λn(θ0)∆t

)
− [λn(θ0) ∆t]

×






1
λn(θ0) ∆t

∂2

∂θ2
0
(λn(θ0) ∆t)

−
[

1
λn(θ0) ∆t

∂
∂θ0

(λn(θ0)∆t)
]2






=
N−1∑

n=0

[
∂

∂θ0
λ(ξn; θ0)

]2

λ(ξn; θ0)
∆t (21)

Since ∆t was taken to be an arbitrarily small interval, we
may now take the limit ∆t→0, or equivalently N→∞. In
doing so, we replace the above summation with an integral:

CRB−1(θ0) =
∫ t0+Tobs

t0

[
∂

∂θ0
λ(t; θ0)

]2

λ(t; θ0)
dt

=
∫ t0+Tobs

t0

[
α ∂

∂θ0
h(θ0 + f(t− t0))

]2

β + α h(θ0 + f(t− t0))
dt

=
∫ θ0+fTobs

θ0

1
f

[
α ∂

∂φh(φ)
]2

β + α h(φ)
dφ (22)

Strictly speaking, the CRB of Eqn. (22) depends on
the parameter θ0; however, since the pulse profile function
h(φ) of the integrand is periodic, the dependence of the in-
tegral on θ0 is either removed when fTobs equals an integer
number of cycles, or is insignificant when fTobs ) 1 cy-
cle. Assuming this to be the case, the CRB is obtained in
its final form:

Var(θ̂0) ≥
[

Tobs

∫ 1

0

[α h′(φ)]2

α h(φ) + β
dφ

]−1

(cycle2) (23)

The CRB may also be stated in terms of the pulse
TOA (or delay) estimation accuracy simply by dividing the
above expression by f2:

Var(τ̂) ≥
[

f2 Tobs

∫ 1

0

[α h′(φ)]2

α h(φ) + β
dφ

]−1

(sec2) (24)

PULSE PHASE TRACKING ALGORITHM

Observers who are either stationary or move at a constant
radial speed in the reference frame of the source will ob-
serve pulses that are strictly periodic over the observation
interval. In these scenarios, the initial phase and frequency
parameters, θ0 and f , are entirely sufficient to character-
ize the instantaneous phase, φdet(t), as it evolves over the
observation interval. It is often the case, however, that ob-
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Fig. 3 Diagram illustrating the pulse phase tracking con-
cept for when the observed signal frequency is time-vary-
ing. Variations in the slope of φdet(t) are due to doppler and
are exaggerated in the diagram for illustration purposes.

servations are made onboard a spacecraft that is traveling
on a curved trajectory, and whose line-of-sight direction
and radial speed toward the source varies appreciably over
the length of the observation. In these cases, the observed
frequency is not constant due to variations in the doppler
shift, and the pulse epochs drift in an unpredictable manner
throughout the observation as the spacecraft moves along
its trajectory.

In this section, an algorithm is proposed for tracking
the phase and frequency of an observed signal based on
the time-varying frequency signal model. The main idea,
illustrated in Figure 3, is to partition the observation in-
terval into smaller subintervals, or blocks, such that the
observed signal frequency is approximately constant over
each block. Let T denote the duration of each block. Pho-
tons obtained over the n-th block are processed by the
ML phase estimation algorithm to solve for the y-intercept,
θ̂0(n), using Eqn. (13). If the reference frequency is set
to: fref = fs, then the y-intercepts in Figure 3 may be inter-
preted as:

θ̂0(n) = Estimate of {φdet(t)− fs(t− t0) ; t = t0 + nT}
= Estimate of { θ0 + θd(t) ; t = t0 + nT }

Hence, the ML estimates track the phase quantity
θ0 + θd(t) over the observation interval by processing the
photon TOA measurements one block at a time. One prob-
lem with this approach is that the sequence θ̂0(n) may con-
tain jumps due to phase wraparounds as well as a consider-
able amount of noise due to estimation errors. To address

the phase wraparound problem, we may consider search-
ing the entire phase space Θ= (0, 1) on processing the first
block, but then for all subsequent blocks, set the search
space to a suitably sized interval centered around the pre-
vious block’s phase estimate. In this manner, the phase
estimates are linked together, and may eventually wander
outside of the initial (0, 1) search interval. The search in-
tervals must be sufficiently large in order to guarantee that
the signal phase stays within the search range of the MLE
algorithm, given the signal dynamics and estimation errors
involved.

In order to reduce the estimation errors or noise in the
MLE output sequence, the estimates θ̂0(n) may be post-
processed either through a moving-average smoother, or a
digital phase-locked loop (DPLL) filter [10][20]. In this
paper, the MLE-DPLL cascade shown in Figure 4 is con-
sidered. Our implementation of the DPLL is second-order
and follows closely that of [20].

Photon
TOAs )(ˆMLE0 n'MLE DPLL

)(ˆDPLL0 n'

)(ˆDPLLd nf

sref ff %

Fig. 4 The MLE-DPLL cascade.

The operations of the DPLL is now described. First, an
ideal phase detector calculates the difference between the
input phase and the loop’s phase estimate:

φ̃(n) = θ̂MLE
0 (n)− θ̂DPLL

0 (n) (25)

It is noted that phase additions and subtraction are carried
out without wrapping (e.g. 0.9 cycle + 0.3 cycle = 1.2 cy-
cle, not 0.2 cycle). Next, the error feedback term φ̃(n) is
used to update the state of the loop filter [20]:

f̂DPLL
d (n + 1) T = K1 φ̃(n) + K2

n∑

m=1

φ̃(m) (26)

Finally, the sequence, f̂DPLL
d (n+1) T , drives a numerically-

controlled oscillator (NCO), dictating the phase amount by
which the current NCO phase must be advanced over the
next block in order to achieve the next phase estimate. At
baseband, the NCO operation corresponds to the following
phase accumulation process:

θ̂DPLL
0 (n + 1) = θ̂DPLL

0 (n) + f̂DPLL
d (n + 1) T (27)

The phase state of the DPLL may be initialized accord-
ing to: θ̂DPLL

0 (0)= θ̂MLE
0 (0). The frequency state of the

DPLL is initialized: f̂DPLL
d (0)= fs v̂(t0)/c, when an esti-

mate of range rate, v̂(t0), is available; otherwise, it is set to
zero.
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NUMERICAL RESULTS

In this section, the simulation setup shown in Figure 5
is used to analyze the performances of the MLE and the
cascaded MLE-DPLL algorithms under the constant and
time-varying frequency models, respectively.

Photon
TOAs

(1)

)(d t'

NHPP 
Gene-
rator

Add 
Doppler 
Effects(

)
*

+
,
-

s0,
),(,,

f
h

'
&./ Photon

TOAs
(2)

(see Ref. [6])

)(t0

Fig. 5 Non-homogeneous Poisson process (NHPP) gener-
ation and photon TOA simulation.

Three hypothetical scenarios were chosen to character-
ize performance over a range of operating conditions. The
effective source and background arrival rates correspond-
ing to these scenarios are listed in Table 1. It is noted,
again, that β includes the non-pulsed source as well as
background photon arrival rates.

Flux Scenario α (ph/s) β (ph/s)
A 1,000 100
B 550 550
C 100 1,000

Table 1 Simulated effective source and background pho-
ton flux scenarios.

The pulse profile shown in Figure 6 is representative of
the Crab pulsar (PSR B0531+21) [22] and was used in
simulating the photon TOAs. The initial phase parame-
ter θ0 was selected randomly on the interval (0, 1), and the
source frequency was set to: fs =29.8466 Hz. Details of
the NHPP generation are not discussed here, but the inter-
ested reader is referred to [6] (available online) for more
information.
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Fig. 6 Normalized pulse profile function of the Crab pul-
sar [22] used in the simulation of photon arrival times.
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Fig. 7 PSR B0531+21 (Crab pulsar) phase estimation ac-
curacy under the three flux scenarios.

The performance of the MLE algorithm under the con-
stant and known frequency model is simulated using the
Monte-Carlo technique. The simulation results are plotted
in Figure 7 and compared against the Cramer-Rao lower
bound calculations. Photon TOAs labeled (1) in Figure 5
were processed by the MLE algorithm. The reference fre-
quency, fref, was set equal to the source frequency, fs. Each
simulation point corresponds to 500 independent realiza-
tions of the NHPP process and subsequent calculation of
the phase estimate, θ̂0, according to Eqn. (13), searched
on the interval Θ= (0, 1). The root-mean squared (RMS)
phase error values were calculated via empirical averaging
of the quantity, min{ (θ0 − θ̂0)2, (θ̂0 − θ0)2}. The mini-
mum operator is necessary to ensure proper logging of the
phase error values, since the error between 0.9 cycle and
0.1 cycle should be −0.2 cycle, and not 0.8 cycle, when
the phase variates are defined on the (0, 1) interval.

The CRB results are also plotted in Figure 7. They were
calculated by numerically integrating the lower bound on
variance, given in Eqn. (22). The CRB values shown in the
plot are the square-root of the variances obtained from Eqn.
(22). It is noted that for large observation times, the CRB
predications provide a tight lower-bound on performance;
however, as the observation time is reduced, a threshold
point is reached, at which the simulation results begin to
deviate from the CRB (e.g., Scenario C, at Tobs∼=2 sec). At

419
!"# %&'()**+,- .//01*23 )4'1- 5&6573 58893 :,;<'1(2/3 .,==,>?+=/00= 



this point, the number of source photons observed (on av-
erage) in each realization of the Poisson process reaches a
critical limit. As the observation time is reduced below this
threshold, realizations of the NHPP more frequently result
in distorted log-likelihood surfaces whose global maxima
do not lie in the vicinity of the true parameter value, θ0.
This non-linear effect causes the estimate, θ̂0, to become
biased. In the limit, as the observation time is reduced even
further beyond the threshold, the probability of receiving
any source photon within the observation interval becomes
small, and as a result, observations convey very little or no
information about the observed signal phase or pulse TOA.
In these cases, the phase estimate, θ̂0, has a pdf that is al-
most uniformly distributed over the search space Θ and is
therefore clearly biased. Reference [24] provides good in-
sight into the behavior of the MLE when operating in heavy
noise and below threshold environments. It is presented in
the context of delay estimation in the presence of additive
white Gaussian noise.

The tracking problem is now analyzed, in which the pho-
ton TOAs labeled (2) in Figure 5 are processed through
the MLE-DPLL cascaded algorithm. The doppler phase
shown in Figure 8 is used to introduce motion effects into
the simulated photon TOAs. It was obtained from actual
GPS telemetry readouts of the Rossi X-ray Timing Ex-
plorer (RXTE) spacecraft while observing the Crab pulsar
in orbit [3]. From the GPS position estimates, motion of
the spacecraft projected in the LOS direction of the pul-
sar was determined. Range rate estimates were then trans-
formed to doppler shift estimates through multiplication by
the scale factor, fs/c. A spline curve-fitting technique was
used to obtain a smooth doppler frequency curve, which
was numerically integrated to obtain the doppler phase pro-
file shown in Figure 8. The initial phase, θ0 =0.1 cycle,
was chosen arbitrarily.

For the DPLL tracking algorithm, the block duration was
set to T =1 sec, and the DPLL was updated once per block.
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Fig. 8 Doppler phase profile used in simulation, derived
from an actual observation of the Crab pulsar as measured
by the RXTE spacecraft.

The gain coefficients K1 and K2 were computed according
to the design methodology outlined in [20]. Their values
determine the traditional loop design parameters, namely:
the loop noise bandwidth BL, damping ratio ζ, and natu-
ral frequency ωn. The following values for the loop noise
bandwidth, BL =0.1, 0.05, 0.01 Hz, and the damping ratio
ζ =0.707 (standard underdamped response), were consid-
ered. These settings resulted in the gain coefficients listed
below:

Loop Bandwidth
BL (Hz) K1 K2

0.10 0.2179 0.02670
0.05 0.1199 0.007658
0.01 0.02609 0.0003448

Table 2 Loop filter constants (from Table VI of [20]).
Fixed design parameters were: ζ =0.707 and T =1 sec.

Figures 9-10 show the phase and frequency estimates of
the DPLL as it acquires and tracks its input signal. Note
that phase error values (and not the phase variates them-
selves) are plotted in order to better show the transient
phase response of the loop. The phase and frequency states
of the DPLL were initialized to zero at the start. This cor-
responded to an initial phase error of −0.1 cycle, and an
initial frequency error of −0.5666 mHz.

In Figure 9, the presence of a bias is observed in the
DPLL phase estimates. This is due to the fact that the signal
dynamics exhibits a nonzero acceleration. In other words,
the second derivative of θd(t) in Figure 8 is nonzero, but the
signal is being tracked using a second-order DPLL. This
suggests that a third-order DPLL is required if one wishes
to remove this bias. Our objective, however, may be to
obtain estimates of the doppler frequency, in which case
the DPLL frequency estimates shown in Figure 10 are ade-
quate, as they appear to be unbiased. A smaller loop noise
bandwidth results in smaller frequency estimation errors,
but requires a longer settling time to overcome the initial
frequency uncertainty. The phase bias and RMS frequency
errors corresponding to Figures 9 and 10 are provided nu-
merically in Table 3. They were calculated by discarding
the first 500 sec of the data to allow the initial settling time
to elapse.

Loop Bandwidth Phase Bias RMS Frequency
BL (Hz) (×10−3 cycle) Error (×10−3 Hz)

0.10 0.686 0.331
0.05 0.700 0.177
0.01 2.393 0.034

Table 3 Second-order DPLL, phase bias and RMS fre-
quency error performances corresponding to tracking of
the signal in Figure 8, under flux scenario A.
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Fig. 9 DPLL simulated doppler phase tracking (Crab pul-
sar, flux scenario A, T =1 sec).

Finally, it is noted that the RMS error (RMSE) results
shown in Figure 7 may be transformed from phase accuracy
into either pulse TOA accuracy or range accuracy, using the
relationships:

RMSE( pulse phase ) = RMSE( pulse TOA )× fs

= RMSE( range )× fs

c

Similarly, the doppler frequency estimates in Figure 10 can
be transformed into pulse TOA rate, or range rate estimates.

CONCLUSION

Accurate phase estimation and tracking of signal pulses
is an important aspect of utilizing these signals for practical
applications such as spacecraft navigation. In this paper, a
maximum-likelihood phase estimator was presented for the
case in which the observed signal frequency is constant and
known over the observation interval. The performance of
this algorithm was analyzed through simulation of photon
TOAs under various signal and noise flux conditions. The
performance of the ML estimator was shown to be opti-
mal as it attained the Cramer-Rao performance bound once
the source observation exceeded a certain threshold in du-
ration. Higher source flux scenarios resulted in the ML es-
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Fig. 10 DPLL simulated doppler frequency tracking (Crab
pulsar, flux scenario A, T =1 sec).

timator achieving the optimal performance at shorter ob-
servation times. This paper also presented a pulse phase
tracking algorithm for the case in which the dynamical mo-
tion of the spacecraft causes the observed signal frequency
to vary considerably over the observation interval. A cas-
caded MLE-DPLL algorithm was proposed, and the fre-
quency estimates of the DPLL were shown to provide un-
biased estimates of the doppler frequency.
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