
Recursive Estimation of Spacecraft Position 
Using X-ray Pulsar Time of Arrival 

Measurements   
 
 

Suneel I. Sheikh and Darryll J. Pines, The University of Maryland 
 
 

 
BIOGRAPHY   
 
Mr. Sheikh is a PhD student in the Aerospace Engineering 
Department of the University of Maryland. His doctoral 
research investigates the use of X-ray pulsars for 
spacecraft navigation. Prior to this, Mr. Sheikh has over 
ten years of industry experience in the field of INS and 
GPS integration and research. 
 
Dr. Pines is a Professor in the Aerospace Engineering 
Department of the University of Maryland. His research 
includes spacecraft navigation, structural dynamics, 
vehicle health monitoring, and micro air vehicle 
development. Dr. Pines is currently on leave as a Program 
Manager at DARPA.   
 
ABSTRACT  
 
The use of pulsars for spacecraft position determination 
has been considered since their discovery [1-3]. These 
celestial sources provide unique signals that can be 
detected by sensors placed onboard spacecraft. Upon 
sufficient detection and processing, these signals can be 
used to generate range measurements with respect to an 
inertial reference location. Multiple measurements can be 
used to determine a navigation solution and enhance 
autonomous vehicle operation. This paper provides a 
description of blending pulsar-derived range 
measurements within a Kalman filter for Earth-orbiting 
spacecraft navigation. Several examples at different 
orbital altitudes are presented to determine the expected 
navigation performance using recursive measurements 
obtained from models of pulsed X-ray signals. 
 
INTRODUCTION  
 
Spacecraft in orbit about Earth follow predictable, often 
stable, paths that can be estimated using a numerical 
propagator of the vehicle’s dynamics. However, 
unmodeled or unforeseen disturbances may perturb the 
vehicle from the orbit path and eventually the numerical 
propagator’s estimated position would grow to an 
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unacceptable level for vehicle guidance or control. Orbit 
determination methods using observations of the 
spacecraft from Earth ground stations can detect these 
deviations of the vehicle from the predicted path and can 
update the estimation of the orbital elements. However, 
increased autonomy of vehicle operation, and perhaps 
reduced costs, are achieved if the spacecraft’s navigation 
system can detect these deviations and correct its own 
solution without input from ground stations. Using 
external aids, the system can update its estimate of 
position and velocity in order to maintain a desired 
performance. Celestial sources have proven to be 
significant aids for navigation throughout history. 
Recently discovered pulsars are a subset of celestial 
sources, which can be shown to provide new benefits to 
spacecraft navigation [4]. 
 
Rotation-powered pulsars are theorized to be rotating 
neutron stars that emit electromagnetic radiation along 
their magnetic field axis [5, 6]. As the star rotates about 
its spin axis, the radiation appears to pulse towards an 
observer as the magnetic pole sweeps past the observer’s 
line of sight to the star. The pulsations from many of these 
sources have been shown to be very stable and predictable 
[7, 8]. These stars emit pulsed, or variable, radiation in all 
bands of the electromagnetic spectrum, however detection 
within the X-ray band allows for the development of more 
compact detectors than other bands, including radio and 
optical. There are several types of variable X-ray celestial 
sources, but pulsars, with their stable, periodic, 
predictable signatures, are the most attractive for use in 
position determination [9]. 
 
In addition to rotation-powered pulsars, accretion-
powered pulsars exist, which emit pulsed radiation 
through the changing viewing angle of thermal hot spots 
on their surface created by the accretion of material from 
their companion within a binary system [5, 6]. These 
types of pulsars also show signal stability and 
predictability. Although they possess complicated pulse 
timing models due to their binary system dynamics, and 
many are transient sources with unpredictable durations 



of low signal intensity, these types of pulsars also have 
characteristics conducive to navigation. 
 
The periodic pulsations from these sources essentially 
emulate celestial lighthouses, or clocks, and can be used 
as navigation beacons in methods similar to Earth-based 
navigation systems, such as the Global Positioning 
System (GPS) and the Global Orbiting Navigation 
Satellite System (GLONASS). Pulsars are extremely 
distant from the solar system, which provides good 
visibility of their signal near Earth as well as throughout 
the solar system. However, unlike GPS or GLONASS, the 
distances of these sources cannot be measured such that 
direct range measurements from the sources can be 
determined. Rather, indirect range measurement along the 
line of sight to a pulsar from a reference location to a 
spacecraft can be computed. Recent studies have 
presented these concepts, as well as demonstrated some 
preliminary experimental results [10, 11]. Presented here 
is the use of these range measurements to recursively 
update, or correct, the position of a spacecraft in orbit 
about Earth to provide a continuous, accurate navigation 
solution. Several orbits are investigated, including 
spacecraft in LEO, MEO, and GPS orbits, as well as 
orbits about Earth’s Moon. 
 
SOURCE CHARACTERIZATION 
 
The cyclic emissions generated by variable celestial 
sources offer measurable signals that can be utilized 
within a navigation system. In order to use these signals, 
they must be detectable, such that sensors can be 
developed to determine the arrival of the emissions from 
each individual unique source; the signals must be able to 
be characterized, such that the necessary distinctive 
parameters of a specific source can be resolved and be 
used to identify each source as data are recorded; and the 
signals must be able to be modeled, such that methods can 
be created to predict the future arrival time of the signals 
at a given location. 

 
At X-ray energy wavelengths, the measured components 
of the emitted signal from a source are the individual 
photons released in the energy discharge. An observed 
profile is created via the detection of these photons from 
the source as they arrive at the navigation system’s 
detector. The number of photons detected within a given 
observation spans numerous pulse cycles if the 
observation time is much greater than the pulse cycle 
period. Each photon is a component of an individual 
pulse, and detecting a single photon does not immediately 
provide an indication of a given pulse.  
 
The process of assembling all the measured photon events 
into a pulse profile is referred to as epoch folding, or 
averaging synchronously all the photon events with the 
expected pulse period of the source. The resulting 
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histogram of photon arrivals over the pulse cycle length 
renders the profile of the pulse from the source. Once 
produced, characteristics of the pulse can be determined 
from a profile, or set of profiles. These characteristics 
include pulse amplitude above the averaged signal, and 
number and shape of peaks. Variability in parameters 
such as period length and noise, as well as continuity of 
pulsed emission can be determined. The unique 
characteristics of each source’s pulse profile aids in the 
identification process of the source. 
 
Standard template profiles are produced similarly to 
observation profiles however, these templates utilize 
much longer observation times and possibly multiple 
observations folded together in order to gain a very high 
signal-to-noise ratio (SNR) value. Figure 1 shows a 
standard pulse template for the Crab Pulsar (PSR 
B0531+21) in the X-ray band (1–15 keV) created using 
multiple observations with the Unconventional Stellar 
Aspect (USA) experiment produced by the Naval 
Research Laboratory (NRL) as it operated onboard the 
Advanced Research and Global Observation satellite 
(ARGOS) [12]. The intensity of the profile is a ratio of 
count rate relative to average count rate. This image 
shows two pulse cycles for clarity. The Crab Pulsar’s 
pulse is comprised of one main pulse and smaller 
secondary sub-pulse with lower intensity amplitude.  

 
Figure 1. Crab pulsar standard pulse template profile. 

The fundamental measurable quantity for time and 
position determination within a variable source-based 
navigation system is the arrival time of an observed pulse 
at the detector. It is necessary to determine the time of 
arrival (TOA) of the pulse so that navigation algorithms 
can compute comparisons of the measured TOA to the 
predicted TOA. A TOA is computed by comparing 
observed and standard template profiles. An observed 
profile, p t( ) , will differ from the template profile, s t( ) , 
by several factors. Typically the observed pulse will vary 



by a shift of time origin, !t
S

, a bias, b , a scale factor, k , 
and random noise !(t)  [13, 14]. The relationship between 
the observed profile and the template profile is given by, 
 p t( ) = b + k s t ! "tS( )#$ %&+' t( )  (1) 
For X-ray observations that record individual photon 
events, Poisson counting statistics typically dominates the 
random noise in this expression. The time shift necessary 
to align the peaks within the two profiles is added to the 
start time of the observation to produce the TOA of the 
pulse for a particular observation. 
 
The pulsed emission from variable celestial sources 
arrives within the solar system with sufficient regularity 
that the arrival of each pulse can be modeled. These 
models predict when specific pulses from the sources will 
arrive within the solar system. Pulse timing models are 
often represented as the total accumulated phase of the 
source’s signal as a function of time. A starting cycle 
number, !

0
=! t

0( ) , can be arbitrarily assigned to the 
pulse that arrives at a fiducial time, t

0
, and all subsequent 

pulses are numbered incrementally from this first pulse. 
The phase of arriving pulses, ! , is measured as the sum 
of the fractions of the period, or phase fraction, ! , and 
the accumulated whole value cycles, N . These can be 
expressed as functions of time as, 
 ! t( ) = " t( ) + N t( )  (2) 
Using the determined pulse frequency, f , and its 
derivatives, the total phase can be specified at a specific 
location using a pulsar phase model of, 

 
 

! t( ) =! t
0( ) + f t " t

0[ ] +
!f

2
t " t

0[ ]
2

+
!!f

6
t " t

0[ ]
3  (3) 

Eq. (3) is known as the pulsar spin equation, or pulsar 
spin down law [5, 6]. In this equation, the observation 
time, t , is in coordinate time of the pulse TOA. 
 
Since the pulse phase depends on the time when it is 
measured as well as the position in space where it is 
measured, the pulse-timing model must also be defined 
for a specific location in space. Therefore along with the 
parameters that define the model, the location of where 
this model is valid must also be supplied for accurate 
pulsar timing. Typically, the location is chosen as the 
solar system barycenter (SSB), or center of mass, because 
of its benefits as an inertial frame origin. However, other 
locations can be used if they are defined with the model. 
 
As select sources have had extended observations over 
many years, the stability of spin rates of some of these 
sources compares well with today’s atomic clocks [7, 8]. 
This high stability allows for accurate pulse prediction 
and timing models. 
 
The estimated accuracy of this arrival time measurement 
is an important aspect for navigation. This accuracy is 
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used to weigh the processing of each TOA either in a 
batch estimation process or Kalman filter implementation 
to improve solutions of spacecraft navigation data. It is 
important to determine the TOA with an accuracy that is 
determined by the SNR of the profile, and not by the 
choice of the phase bin size. A standard cross-correlation 
analysis does not allow this to be easily achieved. 
However, the method given by Taylor [14] is independent 
of bin size and can be implemented into a navigation 
system. This method computes TOA accuracy based upon 
the observed profile characteristics compared to the 
template profile using Fourier transform analysis.  
 
An alternative method for estimating accuracy, used here, 
computes the SNR of a source based upon the known X-
ray characteristics of the source, the photon collection 
area of the detector, A , and the total observation time, 
t
obs

. The pulsed fraction, pf , defines the percentage of 
the source flux that is pulsed. The noise of the pulsed 
signal is comprised of a fraction of both the background 
radiation flux, B

X
, and the total observed flux from this 

source, F
X

. The background flux and the non-pulsed 
component of the signal contribute to the noise during the 
duty cycle of the pulse [15, 16]. The pulsed signal 
contribution to the noise exists throughout the full pulse 
period. The duty cycle, d , of a pulse is the fraction that 
the width of the pulse, W , spans the pulse period, P , as 
d =W P . Using this representation of signal noise, the 
SNR can be determined using the ratio of pulsed 
component of the signal source photon counts, NSpulsed

, to 

the one sigma error in detecting this signal as [11, 15, 16], 

 

SNR =
NSpulsed

! noise

=
NSpulsed

NB + NSnon" pulsed( )
dutycycle

+ NSpulsed

=
FXApf tobs

BX + FX 1" pf( )( ) Atobsd( ) + FXApf tobs

 (4) 

 
For an observation, the TOA accuracy can be determined 
from the one-sigma value of the pulse and the SNR via, 

 !
TOA

=
1

2
W

SNR
 (5) 

In this equation, the one-sigma value of the pulse has 
been estimated as one-half the pulse width (or Half-Width 
Half Maximum, HWHM), which assumes the pulse shape 
is approximately Gaussian and the full width is equal to 
two-sigma. The TOA accuracy represents the resolution 
of the arrival time of a pulse based upon a single 
observation. A TOA measurement can be used to 
determine range of the detector from a chosen reference 
location along the line of sight to the pulsar. The accuracy 
of a range measurement can be computed using the speed 
of light, c , and the pulse TOA accuracy from Eq. (5) as,  
 ! range = c! TOA  (6) 



Although numerous pulsars have been discovered, 
detailed analysis and characterization of many of these is 
ongoing. Three important pulsar sources and their 
parameters are provided in Table 1 and Table 2, listed in 
increasing pulse period. These sources were chosen as 
representative candidate navigation sources due to their 
extensive study and their potential benefits of creating 
accurate navigation solutions. 

Table 1. Pulsar Position and References. 

Name 
(PSR) 

Galactic 
Longitude 

(deg) 

Galactic 
Latitude 

(deg) 

Dist. 
(kpc) 

Refs. 

B1937+21 57.51 -0.29 3.60 [17, 18] 
B1821–24  7.80 -5.58 5.50 [17, 19] 
B0531+21 184.56 -5.78 2.00 [17, 19] 
 

Table 2. Pulsar Period and Characteristics. 

Name 
(PSR) 

Period 
(s) 

Flux 
2–10 keV 
(ph/cm2/s) 

Pulsed  
Frac. 
(%) 

Pulse 
Width 

(s) 
B1937+21 0.00156 4.99E-05 86.0 0.000021 
B1821–24  0.00305 1.93E-04 98.0 0.000055 
B0531+21 0.03340 1.54E+00 70.0 0.001670 
 
Using the data of pulsar parameters in Table 1 and Table 
2, plots of achievable range accuracy can be created. For 
these plots, a common X-ray background rate of 0.005 
ph/cm2/s over 2–10 keV energy range was used for each 
source, and the detector area was chosen as 1-m2. 
Assuming unlimited values of SNR > 2, Figure 2 presents 
the range accuracy of each source based upon total 
observation duration. Table 3 lists the values of the 
accuracy at selected observation durations. Both the plot 
in this figure and the data in the table assume that SNR is 
unbounded, which may not be true for all pulsars. 
 

 
Figure 2. Range accuracy of three pulsars. 
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Table 3. Range Measurement Accuracy For Three 
Pulsars (1-m2 Detector). 

!
range  

Range Measurement Accuracy (m) 
Name 
(PSR) 

500 s  
Observ. 

1000 s 
Observ. 

5000 s 
Observ. 

B1937+21 344 247 110 
B1821–24  325 233 104 
B0531+21 109 77.9 34.8 

 
VEHICLE STATE DYNAMICS 
 
The states used to describe the spacecraft dynamics are 
the three-dimensional inertial frame position and velocity. 
The state vector, x , has a total of six states, and is 
composed of the three element position vector, 
r = rSC = rx , ry , rz{ }

T

, and the three element velocity 

vector, v = vSC = vx , vy , vz{ }
T

. Thus, the states are 

represented in vector form as, 

 x =
r

v

!

"
#
$

%
&  (7) 

 
The dynamics of a non-linear system can be represented 
using the state vector as, 
 

 
!x t( ) =

"
f x t( ) , t( ) + ! t( )  (8) 

In this equation, 
 

!
f  is a non-linear function of the state 

vector, and perhaps time. The second term in Eq. (8) is 
the noise vector associated with the state dynamics. With 
vehicle acceleration, a , being the time derivative of 
velocity, velocity the time derivative of position, and 
ignoring noise, the time derivative of the state vector from 
Eq. (7) can be represented as, 

 
 

!x =
"
f x t( ) , t( ) =

!r

!v

!

"
#
$

%
& =

v

a

!

"
#
$

%
&  (9) 

Once an initial condition is known, as,  

 x t
0( ) = x0 =

r
0

v
0

!

"
#

$

%
&  (10) 

and the acceleration on the vehicle is computed, the state 
dynamics of Eqs. (9) and (10) completely defines the 
motion of the spacecraft. 

 
If an analytical expression for the integral of Eq. (9) can 
be determined, then the vehicle state can be computed 
analytically at future time, t . However, the full dynamics 
of a spacecraft is complex due to multiple high order 
effects, and accurate analytical solutions are difficult to 
produce. Thus, the dynamics of the spacecraft, along with 
its initial condition, are typically numerically integrated in 
order to determine the vehicle’s future state. 

 
The six translational state elements of position and 
velocity of a spacecraft in Eq. (7) is one possible 



representation for the dynamics. An alternative method is 
the utilization of Keplerian elements that describe a 
specific orbit of a spacecraft [20]. An advantage to this 
representation is that except for time within the orbit the 
remaining five classical Keplerian elements are nearly 
constant, and once determined to high accuracy can 
define a vehicle’s orbit with high performance. However, 
a significant disadvantage of using Keplerian elements as 
state variables is that these elements are only valid for one 
specific orbit. This may be useful for a spacecraft that is 
launched and placed in a set orbit, with no mission 
operations deviating from that orbit. However, if a 
spacecraft’s mission requires it to maneuver at some 
point, by merely changing its position along the track of 
its orbit or possibly altering its entire orbit shape, the six 
inertial states of position and velocity are much more 
suitable for these types of mission operations. Also, if a 
vehicle does not operate along a definable Keplerian 
orbit, the position and velocity states are more appropriate 
for this motion. An example of this motion is a group of 
spacecraft flying in formation, where the leader is in a 
Keplerian orbit, but its followers must maintain non-
Keplerian orbits to remain in the desired formation. 

 
To adequately represent a spacecraft’s orbit about a 
central body, the following acceleration effects are 
considered for this analysis: central two-body acceleration 
effects; non-spherical gravitational potential effects from 
the central body; atmospheric drag effects if the 
spacecraft is close to the central body’s atmosphere; and 
any appreciable third-body gravitational potential effects 
[21, 22]. The total acceleration on a spacecraft orbiting 
Earth is the sum of these effects as, 

 
 

atotal = !!r = atwo!body + anon!spherical + adrag

+ aSun + aMoon + aH .O.T
 (11) 

In this equation, a
H .O.T

 represents all higher-order terms 
that may affect acceleration (such as solar radiation 
pressure, vehicle thrusters, etc.) but are nominally 
considered negligible compared to the remaining effects. 
 
NAVIGATION KALMAN FILTER 
 
Using the dynamics presented above, estimates of the 
spacecraft’s flight path can be generated over time. 
Unforeseen disturbances or unmodeled effects eventually 
reduce the accuracy of these estimates. Blending pulsar-
based range measurements with the vehicle dynamics 
provides a method to continually correct any errors within 
the state estimates. A navigation Kalman filter (NKF) is 
presented here to accomplish the integration of the 
dynamics and the measurement processing. 
 
The NKF is implemented as an extended Kalman filter, 
due to the non-linear state dynamics. The states of this 
filter are the errors within the state vector. These error-
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states, !x , can be represented based upon the true states, 
x , and the estimated states,  !x , as, 
  x = !x +!x  (12) 
 
Necessary for error-state and error-covariance processing 
within the NKF is the proper representation of the state 
transition matrix, ! . This matrix is used to determine the 
values of the error-state at a future time, t . 
 !x =" t, t

0( )!x0  (13) 
The state transition matrix is found by solving the integral 
of the following expressions, 

 
 

!! t, t
0( ) = F t( )! t, t

0( )

! t
0
, t
0( ) = I

 (14) 

The Jacobian matrix, F t( ) , is defined as the derivative of 
the dynamics of the states with respect to it states, as in, 

 

 

F t( ) =
!
!
f "x( )
!x

=
!

!x

v

a

"

#
$
%

&
' =

!v

!r

!v

!v
!a

!r

!a

!v

"

#

$
$
$
$

%

&

'
'
'
'

 (15) 

From the definition of the states of Eqs. (7) and (9), the 
first row elements of Eq. (15) can be simplified as, 

 !v

!r
= 0

3x3
;
!v

!v
= I

3x3
 (16) 

The second row elements depend entirely upon the 
acceleration of the spacecraft, and cannot be immediately 
simplified. Thus, using Eq. (16), the Jacobian matrix for 
spacecraft dynamics can be expressed as, 

 F t( ) =
0
3x3

I
3x3

!a

!r

!a

!v

"

#

$
$

%

&

'
'

 (17) 

 
Using the representations for the partial derivatives of 
acceleration the terms for the Jacobian matrix in Eq. (17) 
can be assembled as [21, 22], 

 !a
!r

=
!atwo"body

!r
+
!anon"spherical

#r
+
!adrag

!r
+

!a
i
th
third"body

!r
i=1

SS

$  (18) 

 !a

!v
=
!adrag

!v
 (19) 

In Eq. (18), the third-body gravitational potential effects 
are summed over all the bodies within the solar system 
(SS). In the NKF, only the Moon and Sun are considered 
for Earth-orbiting spacecraft. Drag is the only perturbing 
force that is a function of velocity, thus the only term in 
Eq. (19). Only estimated values are considered in this 
matrix, such that 

 
F = F !r, !v( ) . This matrix can be used in 

the numerical integration of Eq. (14) in order to determine 
the current state transition matrix used for time 
propagation of the error-states and error-covariances. 
 
The expectations of the error-states and the noise of the 
k
th  step in a discrete system are represented as, 



 P
k
= E !x

k
!x

k

T"# $%  (20) 

 Q
k
= E !

k
!
k

T"# $%  (21) 

The covariance matrix, P , is symmetric and provides a 
representation of the statistical uncertainty in the error-
states,!x [23]. The Q  matrix is referred to as the process 
noise matrix for the system, and is related to how well the 
dynamics of the state variables are known. The NKF 
interprets high process noise as poor knowledge of the 
dynamics. The noise of the individual states, ! , is 
assumed to be uncorrelated with respect to time (white 
noise), and assumed to be uncorrelated with respect to the 
states such that E !x

k
"
k

T#$ %& = 0 . The discrete form of the 

dynamics of the covariance matrix can be represented as 
[23], 
 P

k+1

!
="

k
P
k
"
k

T
+#

k
Q

k
#
k

T  (22) 
From the dynamics of Eq. (8), the matrix !  is identity. 
Eqs. (13) and (22) represent the time update (a priori) of 
the NKF. 
 
Similar to the state dynamics, the observations may also 
have a non-linear relationship with respect to the whole-
value states. Thus the measurement, y , has the following 
representation, 
 

 
y t( ) =

!
h x t( ) , t( ) + ! t( )  (23) 

In this expression,  
!
h  is a non-linear function of the state 

vector, and perhaps time. The measurement noise 
associated with each observation is represented as ! . 
 
In order to assemble the observations in terms of the 
error-states of the NKF, a measurement difference, z , 
between the measurement and its estimate from Eq. (23) 
is computed [23]. To first order, this difference is 
computed as, 

 

 

z t( ) = y t( ) !
!
h "x( ) =

"
!
h "x( )
"x

#x + $ t( )

=H "x( )#x + $ t( )

 (24) 

This measurement difference, z t( ) , is referred to as the 
measurement residual, and H  is the measurement matrix 
of measurement partial derivatives with respect to the 
states [23]. This can be represented in discrete form as, 
 z

k+1 =Hk+1!xk+1 + "k+1  (25) 
 
The optimal Kalman gain, Kopt , can be computed based 
upon the time update of the covariance matrix, the 
measurement matrix, and the expectations of the 
measurement noise, R = E !!"#$ %&  [24]. In discrete form 

this is written as, 

 Kk+1opt
= Pk+1

!
Hk+1

T
Hk+1Pk+1

!
Hk+1

T +Rk+1( )
!1

 (26) 
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Utilizing this optimal gain, the measurement update (a 
posteriori) of the state estimates and the covariance 
matrix are produced as [23, 25], 
 

 
!xk+1
+
= !xk+1

!
+Kk+1opt

zk+1  (27) 

 Pk+1
+ = I !Kk+1opt

Hk+1( )Pk+1!  (28) 

 
Although most observations, or measurements, are 
assumed valid, spurious or erroneous measurements may 
occur due to sensor malfunction or data processing issues. 
If erroneous pulsar-based measurements are improperly 
labeled with a low measurement noise, the processing of 
these erroneous measurements through the Kalman filter 
can severely impact the filter’s performance. Therefore, is 
prudent to test individual measurements prior to their 
incorporation into the filter to avoid these negative 
situations. Individual measurements are tested using the 
filter’s own estimate of its performance to evaluate a 
measurement. Once the filter processes enough 
measurements and the state covariance has been reduced 
from its initial condition, any out-lying measurements that 
are many times the filter’s estimate of its performance can 
be ignored. The innovations of the filter are determined 
from the optimal Kalman gain calculations of Eq. (26) 
[23]. For non-linear systems, this innovations term, ! , is, 
 !

k+1 =Hk+1Pk+1
"
H

k+1

T
+R

k+1  (29) 
Assuming N  individual states, an individual scalar 
measurement from Eq. (25) can be represented as, 
 z

i
=H i,1 :N( )!xNx1  (30) 

The innovations for this measurement are the ith diagonal 
element of Eq. (29), as !

i
= !

k+1 i, i( ) . An individual 
measurement is compared to its innovations as, 
 z

i
! m"

i
 (31) 

The scalar m  is the proportional value of the innovations 
chosen as an acceptable limit for the test. As long as the 
measurement is m -times less than the filter’s 
innovations, the filter processes the measurement. Typical 
values of m  are between 3 and 5, and the NKF uses 5. 
Eq. (31) is referred to as the measurement residual test. 
 
MEASUREMENT MODELS 
 
The NKF utilizes range measurements produced by the 
observation of pulses from pulsars. The range 
measurement for spacecraft relative to a reference 
location is produced by comparing the measured pulse 
TOA at the spacecraft to its predicted TOA at the 
reference location. Any difference in the measured and 
predicted TOA values is assumed to be a result of errors 
in the estimated vehicle position. 
 
If not located at the SSB, a spacecraft sensor will detect a 
pulse at a time relative to the predicted time based upon 
the model of Eq. (3). A direct comparison of the arrival 
time at the spacecraft to the same pulse’s arrival time at 



the SSB is accomplished using time transfer equations. 
These equations require knowledge of the spacecraft’s 
position and velocity in order to be implemented 
correctly. In the NKF’s measurement scheme, estimated 
values of spacecraft position and velocity are utilized 
within the time transfer equation to create the best 
estimates of pulse arrival times at the SSB. These state 
estimates are provided by the onboard orbit propagator of 
Eqs. (9) and (10) implemented within the vehicle’s 
navigation system, which provides a continuous estimate 
of the vehicle’s dynamics during a pulsar observation.  
 
Figure 3 presents a diagram of an Earth-orbiting 
spacecraft and a distant pulsar. The pulse model is defined 
at the SSB, which is located very near the Sun’s surface. 
Unit direction to the pulsar is shown as well as the 
position of the spacecraft with respect to the SSB, r

SC
, 

the position of Earth with respect to the SSB, r
E

, and the 
position of the spacecraft with respect to Earth, r

SC /E
. 

 
Figure 3. Pulsar viewed by Earth-orbiting spacecraft. 

To first order, the pulse TOA measured at the spacecraft, 
t
SC

, can be transferred to its corresponding time at the 
SSB, t

b
, via the geometry of Figure 3. Using c  for speed 

of light and n̂
i
 for unit direction to the ith  pulsar, the 

transfer is simply [10, 11], 

 t
b
= t

SC
+
n̂
i
! r

SC

c
 (32) 

The transfer equation can also be computed with the 
spacecraft’s position relative to Earth, using the known 
Earth position as, 

 t
b
= t

SC
+
n̂
i

c
! r

E
+ r

SC E( )  (33) 

Earth’s position with respect to the SSB can be provided 
by standard ephemeris tables (ex. JPL ephemeris data). 
 
The NKF is used to determine the errors of the spacecraft 
position and velocity. Using the estimated value of this 
position, 

 
!r
SC /E

, the error in this value, !r
SC /E

, is related to 
the true value as, 
 

 
r
SC /E

= !r
SC /E

+!r
SC /E

 (34) 
Therefore, the time transfer relationship in Eq. (33) can be 
written in terms of the position error as, 
 

 

ct
b
= ct

SC
+ n̂

i
! r

E
+ !r

SC E( )"# $%+ n̂i !&rSC E
 (35) 
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Eq. (35) is in the form of the Kalman filter measurement 
equation of Eq. (24), where, 

 

 

y = ct
b

!
h "x( ) = ctSC + n̂i ! rE + "rSC /E( )

z = y "
!
h "x( ) = ctb " ct

SC
+ n̂

i
! r

E
+ "r

SC /E( )#$ %&

H "x( )'x = n̂i !'rSC /E

 (36) 

The observation, y , is the predicted TOA from the pulse 
timing model of Eq. (3) of the pulse nearest the 
measurement 

 

!
h "x( ) . 

 
Although the first order measurement of Eq. (36) 
represents the conceptual implementation of a pulsar-
based range equation, additional higher order terms 
should be included in order to accurately transfer time 
from a spacecraft to the SSB. Special and General 
relativity theorize effects on the propagation of the pulsar 
pulse wave as it travels from a pulsar, through the solar 
system, past the spacecraft, and on to the SSB. One is the 
effect of relativistic time transfer due to path bending 
within the solar system that should be included to adjust 
the pulse arrival time calculation. The second is the effect 
of a clock, which is used to time the pulse arrivals, that is 
in motion relative to a fixed inertial frame clock. This 
proper time to coordinate time correction of the 
spacecraft clock’s time measurement must account for the 
vehicle’s motion and gravitational effects from nearby 
bodies. 
 
Using the coordinate time of the pulse TOA at the 
spacecraft, t

SC
, the relativistic effects introduce the 

proper-motion of the pulsar, V , which changes the 
pulsar’s position from its initial location of D

0
at the 

transmission of the 0th  pulse, t
0

, to the transmission of 
the Nth  pulse at t

N
!t

N
" t

N
# t

0( ) . Also considered is 
the position of the SSB relative to the Sun, b . Assuming 
the sun is the primary gravitational potential, µ

Sun
, 

affecting the photon path, and assuming terms of 
O 1 D

0

2( )  are negligible, the following time transfer 

equation results [11, 26],  
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(37) 

The non-linear terms in this expression with respect to 
vehicle position, r

SC
, can be linearized about the position 



error, !r
SC E

. Assuming second-order and higher terms 
involving position error are negligible, this expression can 
be put into the Kalman filter measurement form as, 
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This representation assumes a TOA measurement from a 
recognizable singular source. Additional complexity is 
added if binary pulsar observations are incorporated, and 
these extra terms must be considered within the time 
transfer equations [27]. 
 
The coordinate time used for the spacecraft observation 
time in the above equations is composed of the 
spacecraft’s accurate clock time, or proper time, !

SC
, and 

the standard corrections from this proper time to standard 
coordinate time [28]. Spacecraft clocks must also be 
corrected for their motion within the inertial fame. 
Therefore, the coordinate time of spacecraft orbiting Earth 
can be represented as [11, 29], 

 t
SC
= !

SC
+ StdCorr

E
+
1

c
2
v
E
" r

SC E( )  (39) 

For spacecraft using an estimated position, the 
spacecraft’s position relative to Earth can be represented 
by its estimate and its error, and the coordinate time 
equation from Eq. (39) becomes, 

 
 

t
SC
= !

SC
+ StdCorr

E
+
1

c
2
v
E
" !r

SC /E( ) +
1

c
2
v
E
"#r

SC /E( )  (40) 
This expression for spacecraft coordinate time could be 
incorporated into the NKF measurement of Eq. (38). For 
some applications, adding clock error and clock rate error 
to the state vector within the NKF would allow estimation 
of spacecraft clock drift. Various models could be used 
for the clock error state dynamics, some similar to the 
implementations used for GPS receiver clock error 
analysis [25]. Eq. (40) assumes no error in the coordinate 
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time standard corrections, Earth inertial velocity, v
E

, or 
Earth ephemeris data, however, these errors could also be 
include if considered relevant. 
 
VISIBILITY OBSTRUCTION 
 
Even though sources are very distant from the solar 
system, any body that passes between the spacecraft and 
the source may obstruct a spacecraft detector’s view of 
the source. To avoid this obstruction occurring during a 
planned source observation, it is necessary to determine 
the locations within an orbit where the detector’s visibility 
of a source is obstructed. Any source that is not 
perpendicular to the vehicle’s orbit plane may pass behind 
Earth’s limb for some portion of the orbit. 
 
Figure 4 provides a diagram of a spacecraft in Earth orbit, 
as well as the shadow on the orbit cast by Earth. Earth 
will block the view of the source while the vehicle is in 
the shadow. Any celestial body, other spacecraft, or 
components on the vehicle itself could obscure the view 
of a source. The size of an object and its distance from the 
spacecraft’s detector affects the amount of obscuration. If 
a celestial body has an appreciable atmosphere, which 
may absorb X-ray photons, this height of the atmosphere 
must be added to the diameter of the body when 
determining source visibility. 

Figure 4. Shadow of pulsar cast by Earth on 
spacecraft orbit. 

To determine whether a planetary body obscures the view 
of a source, it is necessary to determine the size of the 
shadow cast by the body and whether the spacecraft’s 
path intersects this shadow [30]. Figure 5 provides a 
diagram of the orbit of a vehicle about this body and the 
geometry associated with the shadow cast by the body. 
The angle, ! , between the vehicle’s position relative to 
the body, r

SC B
, and the unit direction to the source, n̂ , 

can be determined from, 
 cos !( ) = n̂ " rSC B

 (41) 



The vehicle is within the body’s shadow when this angle 
is between the entrance and exit angles, !

ENT
 and !

EXIT
 

respectively, of the shadow, 
 !

ENT
" ! "!

EXIT
 (42) 

From the geometry based upon the radius of the body, 
R

B
, these angles can be expressed using source direction 

and spacecraft position as [30], 
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 (43) 

If the computed angle is between these bounds, then the 
vehicle is within the body’s shadow. For Earth, the 
planetary radius should include Earth’s atmosphere 
height, h

ATM
, such that R

B
= R

E
+ h

ATM
. 

 
Using the Crab pulsar data from Table 1 and the orbit of 
the ARGOS vehicle with Eq. (43), this pulsar is visible 
for approximately 4317 s during the 6102 s orbital period. 
Figure 6 plots the visibility of the Crab pulsar, in addition 
to PSR B1937+21 and PSR B1821+24 during four 
ARGOS orbits due to the combined effects of the 
shadows of Earth, the Sun, and the Moon. This figure 
shows that at least one pulsar is visible during each of 
these orbits. Although visibility durations for a specific 
source can be determined using this method along a 
spacecraft orbit, additional visibility limitations such as 
vehicle component obstruction or detector gimbaled axis 
limitations may reduce these durations. Similar analysis 
has been completed for visibility of these three pulsars in 
the GPS orbit. Although the GPS satellite nearly enters 
Earth’s shadow for the Crab pulsar, all three pulsars are 
visible for the entire orbit of this satellite. 

Figure 5. Geometry of body shadow on orbit. 
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Figure 6. Visibility of three pulsars due to shadows 
from Earth, Sun, and Moon in ARGOS orbit. 

SIMULATION AND RESULTS 
 
To test the performance of the NKF, a simulation was 
developed that incorporates vehicle dynamics and pulsar-
based range measurements. The vehicle state dynamics 
was implemented as in Eqs. (9) and (10). The non-
spherical Earth gravitational zonal terms of J2 through J6 
were implemented [21], and a Harris-Priester model of 
Earth’s atmosphere was utilized [22]. The Moon and Sun 
were the two third-body effects considered. The solar 
system position and velocity information was provided by 
the JPL ephemeris data [31].  
 
Three existing satellite orbits of ARGOS, Laser 
Geodynamics (LAGEOS-1), and GPS Block IIA-16 PRN-
01 were investigated. Initial truth state conditions were 
chosen from the two-line element sets (TLE) of orbit data 
provided by NORAD [32]. These TLE sets are read by 
analytical perturbation orbit propagators (SGP4) [33]. The 
TLE data provide the ballistic coefficients of the 
spacecraft used in the atmospheric drag computations. A 
proposed orbit of the Lunar Reconnaissance Orbiter 
(LRO) was also investigated. This planned mission will 
orbit the Moon at an altitude of 50 km beginning in 2008.  
 
The simulated state dynamics for these orbits was 
integrated using a fourth-order Runge-Kutta method with 
a fixed time step of 10 s. The resulting solution was 
verified using both the TLE SGP4 and the NRL PPT3 
[34] analytical orbit propagators. During the state 
integration, the state transition matrix, ! , was 
simultaneously computed.  
 
The vehicle state estimate and transition matrix were 
provided to the NKF to process a time-update of the 
covariance matrix. The initial standard deviations for the 
covariance matrix were chosen as !"r

0

 = 250 m and !"v
0

 



= 0.25 m/s for each axis [22]. The one-sigma state process 
noise was chosen as !"r  = 0.05 m and !"v  = 0.05 mm/s, 
and assumed fixed for the entire simulation run [22]. 
 
Pulsar-based range measurements were simulated using 
the relativistic time transfer and measurement of Eq. (38). 
The measurement noise, ! t( ) , associated with Eq. (38) 
was simulated as random with a standard deviation equal 
to the range accuracy of each pulsar based upon the 
results of Table 3, assuming an 1-m2 detector. The 
relativistic time transfer and measurement were computed 
assuming spacecraft coordinate time, although the effects 
of proper time to coordinate time conversion of Eq. (40) 
will be incorporated in future analysis. The current 
analysis assumes zero pulsar proper-motion, which is 
small compared to the remaining terms in Eq. (38). Since 
some modeling error is introduced by ignoring these small 
effects, the measurement noise was increased by an 
additional 2%. 
 
It was assumed that only one pulsar could be detected 
during a single fixed 500 s observation. The priority of 
observation was based upon the measurement accuracies 
from Table 3: B0531+21, B1821-24, and B1937+21. If 
the visibility of a pulsar was obscured during an 
observation, the next pulsar in the priority list was 
utilized. If none were available, the measurement cycle 
was skipped, and the successive cycle would begin.  
 
A truth orbit truth model was created using a propagator 
with the initial conditions set from the TLE data values. 
The NKF used the same propagator, but had initial errors 
introduced to the initial conditions of the truth orbit. This 
requires the NKF to detect and remove these state errors 
based upon the simulated range measurements. All the 
simulated cases began with a 100 m position error and 
0.01 m/s velocity error in each axis [22]. The performance 
of the NKF was determined by how well these errors 
could be detected, and by quantifying the true errors of 
the NKF after selected periods of operation. 
 
Figure 7 provides a plot of the NKF’s standard deviation 
envelope of the three axes of position for the GPS satellite 
orbit. The error between the true vehicle position and the 
NKF’s estimate of position is also plotted, which remains 
within the one-sigma envelope after initial filter settling. 
Figure 8 provides a similar plot for the ARGOS orbit. 
Figure 9 plots the magnitude of the position error for an 
orbit propagation including the initial state errors but with 
no state corrections. It also shows the errors of the NKF 
solution from truth. After four GPS orbits the uncorrected 
state position errors has grown to ~15 km, whereas the 
NKF state estimate remains < 200 m after settling. Figure 
10 shows after 24 ARGOS orbits, the uncorrected state 
errors have grown to ~ 7 km, whereas the NKF state 
estimate remains < 200 m. 
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Figure 7. Standard deviation and error for GPS. 

 
Figure 8. Standard deviation and error for ARGOS. 

 
Figure 9. Uncorrected and NKF position error for GPS. 



 
Figure 10. Uncorrected and NKF position error for 
ARGOS. 

Table 4 provides performance values for each spacecraft 
orbit. The results from five separate runs with different 
random number seeds were averaged for this table’s data. 
Performance values are reported for the entire simulation 
duration and for the duration after the initial filter settling 
period (usually two orbits). Data is reported in radial, 
along-track, and cross-track (RAC) directions of the orbit. 
The one-sigma errors of the filter states from truth are 
provided. For reference, the NKF computed covariance 
estimate and the error in the filter’s state from truth at the 
end of the simulation run are provided. 
 
For Earth-orbiting spacecraft, the performance after filter 
settling of the NKF is on the order of 200 m or less. 
Future simulations will include individual photon arrivals 
such that all operations are simulated to produce the range 
measurement and insure proper relativistic time transfer. 
The study of the LRO orbit is ongoing, with performance 
on the order of 0.5 km or less achieved. It is likely that 
additional filter parameter tuning is required for the LRO 
orbit analysis. However, the results demonstrate the 
potential benefits of this pulsar-based navigation system 
for missions above the GPS constellation orbit and for 
continuous operation perhaps behind the Moon, where 
radar contact from Earth would be unavailable. 
 
CONCLUSIONS 
 
Pulsars present an intriguing and unique opportunity to 
develop a new spacecraft navigation system. With the 
potential range accuracy of a few hundred meters, these 
sources can maintain spacecraft orbits to within 100 – 300 
m (one-sigma) in three dimensions. As research on these 
sources and their use in navigation continues, this may 
allow the creation of navigation systems that produce 
greater autonomy for larger regions of space than existing 
systems alone.  
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Table 4. NKF Performance Values 

1-Sigma 
Position Error 

(RAC) (m) 

Orbit Sim 
Length 
(103 s) 

Full 
Sim 
Run 

After 
filter 
Settling 

NKF  
1-Sigma 
At Sim 

End 
(RAC) 

(m) 

NKF 
Error 
At Sim 

End 
(RAC) 

(m) 
ARGOS 150 42 

111 
56 

26 
91 
57 

30 
136 
86 

14 
71 
21 

LAGEOS 110 74 
116 
201 

25 
57 

200 

15 
86 

147 

7 
69 

173 
GPS 173 164 

154 
196 

23 
50 
90 

52 
129 
204 

20 
32 
62 

LRO 110 359 
520 
371 

242 
401 
308 

290 
495 
245 

178 
309 
160 
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